Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Bioconjug Chem ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284580

RESUMO

Redirecting T cells to tumor cells by bispecific antibodies is an effective approach to treat cancer, and T cell-dependent bispecific antibodies (TDBAs) are an emerging class of potent immunotherapeutic agents. By simultaneously targeting antigens on tumor cells and T cells, T cells are activated to kill tumor cells. Herein, we report a platform to generate a novel class of 2:1 structure of T cell-dependent bispecific antibody with bivalency for HER2 receptors on tumor cells and monovalency for CD3 receptors on T cells. For this, we use a biogenic inverse electron-demand Diels-Alder (IEDDA) click reaction on genetically encoded tyrosine residues to install one TCO handle on therapeutically approved antibody trastuzumab. Subsequent TCO-tetrazine click with a tetrazine-functionalized CD3-binding Fab yields a 2:1 HER2 × CD3 TDBA that exhibits a tumor-killing capability at picomolar concentrations. Monovalency toward the CD3 receptor on T cells can lower the chances of cytokine release syndrome, which is a common side effect of such agents. Our semisynthetic approach can generate highly potent TDBA constructs in a few chemoenzymatic and synthetic steps.

2.
J Soc Psychol ; : 1-16, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291553

RESUMO

Previous research has identified that the relationship between perceived economic inequality and supporting redistribution is mediated by beliefs about what causes poverty. Despite its usefulness, this approach has failed to recognize the role of perceived causes of wealth in explaining the relationship between these two variables. We conducted correlational (N = 523) and experimental (N = 226) studies, demonstrating that in contexts with high inequality, attributing poverty and wealth primarily to external factors resulted in greater support for redistribution. Furthermore, the attributions that served as mediators varied depending on the proposed redistributive measure. We delve into the significance of wealth attributional processes in understanding attitudes toward redistribution.

3.
Chemosphere ; 363: 142934, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053781

RESUMO

Microplastics (MPLs) are contaminants of emerging concern (CECs) ubiquitous in aquatic environments, which can be bioaccumulated along the food chain. In this study, the accumulation of polyethylene (PE), polystyrene (PS) and polyethylene terephthalate (PET) microplastics (MPLs) of sizes below 63 µm was assessed in Mediterranean mussels (Mytilus galloprovincialis spp). Moreover, the potential of mussels to uptake and bioaccumulate other organic contaminants, such as triclosan (TCS) and per- and polyfluoroalkyl substances (PFASs), was evaluated with and without the presence of MPLs. Then, the modulation of MPLs in the human bioaccessibility of co-contaminants was assessed by in vitro assays that simulated the human digestion process. Exposure experiments were carried out in 15 L marine microcosms. The bioaccumulation and bioaccessibility of PE, PS, PET, and co-contaminants were assessed by means of liquid chromatography -size exclusion chromatography-coupled to high-resolution mass spectrometry (LC(SEC)-HRMS). Our outcomes confirm that MPL bioaccumulation in filter-feeding organisms is a function of MPL chemical composition and particle sizes. Finally, despite the lower accumulation and bioaccumulation of PFASs in the presence of MPLs, the bioaccessibility assays revealed that PFASs bioaccessibility was favoured in the presence of MPLs. Since part of the bioaccumulated PFASs are adsorbed onto MPL surfaces by hydrophobic and electrostatic interactions, these interactions easily change with the pH during digestion, and the PFASs bioaccessibility increases.


Assuntos
Bioacumulação , Microplásticos , Mytilus , Poluentes Químicos da Água , Animais , Microplásticos/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Mytilus/metabolismo , Polietileno/química , Polietileno/metabolismo , Poliestirenos/química , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Humanos , Bivalves/metabolismo , Triclosan/metabolismo , Cadeia Alimentar , Monitoramento Ambiental
4.
J Hazard Mater ; 476: 135134, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38986413

RESUMO

The increased environmental presence of micro-/nanoplastics (MNPLs) and the potential health risks associated with their exposure classify them as environmental pollutants with special environmental and health concerns. Consequently, there is an urgent need to investigate the potential risks associated with secondary MNPLs. In this context, using "true-to-life" MNPLs, resulting from the laboratory degradation of plastic goods, may be a sound approach. These non-commercial secondary MNPLs must be labeled to track their presence/journeys inside cells or organisms. Because the cell internalization of MNPLs is commonly analyzed using fluorescence techniques, the use of fluorescent dyes may be a sound method to label them. Five different compounds comprising two chemical dyes (Nile Red and Rhodamine-B), one optical brightener (Opticol), and two industrial dyes (Amarillo Luminoso and iDye PolyPink) were tested to determine their potential for such applications. Using commercial standards of polystyrene nanoplastics (PSNPLs) with an average size of 170 nm, different characteristics of the selected dyes such as the absence of impact on cell viability, specificity for plastic staining, no leaching, and lack of interference with other fluorochromes were analyzed. Based on the overall data obtained in the wide battery of assays performed, iDye PolyPink exhibited the most advantages, with respect to the other compounds, and was selected to effectively label "true-to-life" MNPLs. These advantages were confirmed using a proposed protocol, and labeling titanium-doped PETNPLs (obtained from the degradation of milk PET plastic bottles), as an example of "true-to-life" secondary NPLs. These results confirmed the usefulness of iDye PolyPink for labeling MNPLs and detecting cell internalization.


Assuntos
Corantes Fluorescentes , Microplásticos , Corantes Fluorescentes/química , Microplásticos/toxicidade , Humanos , Nanopartículas/química , Nanopartículas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Animais , Poliestirenos/química , Poliestirenos/toxicidade
5.
J Hazard Mater ; 475: 134900, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878440

RESUMO

The expected increments in the production/use of bioplastics, as an alternative to petroleum-based plastics, require a deep understanding of their potential environmental and health hazards, mainly as nanoplastics (NPLs). Since one important exposure route to NPLs is through inhalation, this study aims to determine the fate and effects of true-to-life polylactic acid nanoplastics (PLA-NPLs), using the in vitro Calu-3 model of bronchial epithelium, under air-liquid interphase exposure conditions. To determine the harmful effects of PLA-NPLs in a more realistic scenario, both acute (24 h) and long-term (1 and 2 weeks) exposures were used. Flow cytometry results indicated that PLA-NPLs internalized easily in the barrier (∼10 % at 24 h and ∼40 % after 2 weeks), which affected the expression of tight-junctions formation (∼50 % less vs control) and the mucus secretion (∼50 % more vs control), both measured by immunostaining. Interestingly, significant genotoxic effects (DNA breaks) were detected by using the comet assay, with long-term effects being more marked than acute ones (7.01 vs 4.54 % of DNA damage). When an array of cellular proteins including cytokines, chemokines, and growth factors were used, a significant over-expression was mainly found in long-term exposures (∼20 proteins vs 5 proteins after acute exposure). Overall, these results described the potential hazards posed by PLA-NPLs, under relevant long-term exposure scenarios, highlighting the advantages of the model used to study bronchial epithelium tissue damage, and signaling endpoints related to inflammation.


Assuntos
Poliésteres , Poliésteres/toxicidade , Poliésteres/química , Humanos , Linhagem Celular , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Citocinas/metabolismo , Microplásticos/toxicidade , Dano ao DNA/efeitos dos fármacos , Nanopartículas/toxicidade , Nanopartículas/química , Epitélio/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Células Epiteliais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos
6.
Chembiochem ; : e202400170, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713134

RESUMO

Bispecific antibodies (bsAbs) have recently emerged as a promising platform for the treatment of several conditions, most importantly cancer. Based on the combination of two different antigen-binding motifs in a single macromolecule; bsAbs can either display the combined characteristics of their parent antibodies, or new therapeutic features, inaccessible by the sole combination of two distinct antibodies. While bsAbs are traditionally produced by molecular biology techniques, the chemical development of bsAbs holds great promises and strategies have just begun to surface. In this context, we took advantage of a chemical strategy based on the use of the Ugi reaction for the site-selective conjugation of whole antibodies and coupled the resulting conjugates in a bioorthogonal manner with Fab fragments, derived from various antibodies. We thus managed to produce five different bsAbs with 2 : 1 valency, with yields ranging from 20 % to 48 %, and showed that the affinity of the parent antibody was preserved in all bsAbs. We further demonstrated the interest of our strategy by producing two other bsAbs behaving as cytotoxic T cell engagers with IC50 values in the picomolar range in vitro.

7.
Sci Total Environ ; 934: 173236, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761522

RESUMO

During plastic waste degradation into micro/nanoplastics (MNPLs) their physicochemical characteristics including surface properties (charge, functionalization, biocorona, etc.) can change, potentially affecting their biological effects. This paper focuses on the surface functionalization of MNPLs to determine if it has a direct impact on the toxicokinetic and toxicodynamic interactions in human umbilical vein endothelial cells (HUVECs), at different exposure times. Pristine polystyrene nanoplastics (PS-NPLs), as well as their carboxylated (PS-C-NPLs) and aminated (PS-A-NPLs) forms, all around 50 nm, were used in a wide battery of toxicological assays. These assays encompassed evaluations on cell viability, cell internalization, induction of intracellular reactive oxygen species (iROS), and genotoxicity. The experiments were conducted at a concentration of 100 µg/mL, chosen to ensure a high internalization rate across all treatments while maintaining a sub-toxic concentration. Our results show that all PS-NPLs are internalized by HUVECs, but the internalization dynamic depends on the particle's functionalization. PS-NPLs and PS-C-NPLs internalization modify the morphology of the cell increasing its inner complexity/granularity. Regarding cell toxicity, only PS-A-NPLs reduced cell viability. Intracellular ROS was induced by the three different PS-NPLs but at different time points. Genotoxic damage was induced by the three PS-NPLs at short exposures (2 h), but not for PS-C-NPLs at 24 h. Overall, this study suggests that the toxicological effects of PSNPLs on HUVEC cells are surface-dependent, highlighting the relevance of using human-derived primary cells as a target.


Assuntos
Sobrevivência Celular , Células Endoteliais da Veia Umbilical Humana , Microplásticos , Espécies Reativas de Oxigênio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Microplásticos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas/toxicidade , Propriedades de Superfície , Poliestirenos/toxicidade , Células Endoteliais/efeitos dos fármacos
8.
Nat Commun ; 15(1): 3516, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664367

RESUMO

Chemical cross-linking reactions (XL) are an important strategy for studying protein-protein interactions (PPIs), including low abundant sub-complexes, in structural biology. However, choosing XL reagents and conditions is laborious and mostly limited to analysis of protein assemblies that can be resolved using SDS-PAGE. To overcome these limitations, we develop here a denaturing mass photometry (dMP) method for fast, reliable and user-friendly optimization and monitoring of chemical XL reactions. The dMP is a robust 2-step protocol that ensures 95% of irreversible denaturation within only 5 min. We show that dMP provides accurate mass identification across a broad mass range (30 kDa-5 MDa) along with direct label-free relative quantification of all coexisting XL species (sub-complexes and aggregates). We compare dMP with SDS-PAGE and observe that, unlike the benchmark, dMP is time-efficient (3 min/triplicate), requires significantly less material (20-100×) and affords single molecule sensitivity. To illustrate its utility for routine structural biology applications, we show that dMP affords screening of 20 XL conditions in 1 h, accurately identifying and quantifying all coexisting species. Taken together, we anticipate that dMP will have an impact on ability to structurally characterize more PPIs and macromolecular assemblies, expected final complexes but also sub-complexes that form en route.


Assuntos
Reagentes de Ligações Cruzadas , Fotometria , Desnaturação Proteica , Reagentes de Ligações Cruzadas/química , Fotometria/métodos , Proteínas/química , Proteínas/metabolismo , Eletroforese em Gel de Poliacrilamida/métodos , Mapeamento de Interação de Proteínas/métodos , Espectrometria de Massas/métodos , Humanos
9.
J Hazard Mater ; 469: 134030, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38493621

RESUMO

Continuous exposure to plastic pollutants may have serious consequences on human health. However, most toxicity assessments focus on non-environmentally relevant particles and rarely investigate long-term effects such as cancer induction. The present study assessed the carcinogenic potential of two secondary nanoplastics: polyethylene terephthalate (PET) particles generated from plastic bottles, and a biodegradable polylactic acid material, as respective examples of environmentally existing particles and new bioplastics. Pristine polystyrene nanoplastics were also included for comparison. A broad concentration range (6.25-200 µg/mL) of each nanoplastic was tested in both the initiation and promotion conditions of the regulatory assessment-accepted in vitro Bhas 42 cell transformation assay. Parallel cultures allowed confirmation of the efficient cellular internalisation of the three nanoplastics. Cell growth was enhanced by polystyrene in the initiation assay, and by PET in both conditions. Moreover, the number of transformed foci was significantly increased only by the highest PET concentration in the promotion assay, which also showed dose-dependency, indicating that nano PET can act as a non-genotoxic tumour promotor. Together, these findings support the carcinogenic risk assessment of nanoplastics and raise concerns regarding whether real-life co-exposure of PET nanoplastics and other environmental pollutants may result in synergistic transformation capacities.


Assuntos
Poluentes Ambientais , Poliésteres , Poluentes Químicos da Água , Humanos , Poliestirenos/toxicidade , Poliestirenos/análise , Polietilenotereftalatos/toxicidade , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Polietileno
10.
Environ Pollut ; 348: 123823, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513942

RESUMO

The increasing presence of secondary micro/nanoplastics (MNPLs) in the environment requires knowing if they represent a real health concern. To such end, an important point is to test representative MNPLs such as the denominated true-to-life MNPLs, resulting from the degradation of plastic goods in lab conditions. In this study, we have used polyethylene terephthalate (PET) NPLs resulting from the degradation of PET water bottles. Since inhalation is an important exposure route to environmental MNPLS, we have used mouse alveolar macrophages (MH-S) as a target cell, and the study focused only on the cells that have internalized them. This type of approach is novel as it may capture the realistic adverse effects of PETNPLs only in the internalized cells, thereby mitigating any biases while assessing the risk of these MNPLs. Furthermore, the study utilized a set of biomarkers including intracellular reactive oxygen species (ROS) levels, variations on the mitochondrial membrane potential values, and the macrophage polarization to M1 (pro-inflammatory response) and M2 (anti-proinflammatory response) as possible cellular effects due to PETNPLs in only the cells that internalized PETNPLs. After exposures lasting for 3 and 24 h to a range of concentrations (0, 25, 50, and 100 µg/mL) the results indicate that no toxicity was induced despite the 100% internalization observed at the highest concentration. Significant intracellular levels of ROS were observed, mainly at exposures lasting for 24 h, in an indirect concentration-effect relationship. Interestingly, a reduction in the mitochondrial membrane potential was observed, but only at exposures lasting for 24 h, but without a clear concentration-effect relationship. Finally, PETNPL exposure shows a significant polarization from M0 to M1 and M2 subtypes. Polarization to M1 (pro-inflammatory stage) was more marked and occurred at both exposure times. Polarization to M2 (anti-inflammatory stage) was only observed after exposures lasting for 24 h. Due to the relevance of the described biomarkers, our results underscore the need for further research, to better understand the health implications associated with MNPL exposure.


Assuntos
Macrófagos Alveolares , Microplásticos , Humanos , Animais , Camundongos , Polietilenotereftalatos/toxicidade , Espécies Reativas de Oxigênio , Biomarcadores
11.
Talanta ; 272: 125727, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364570

RESUMO

Disulfide rebridging methods are emerging recently as new ways to specifically modify antibody-based entities and produce future conjugates. Briefly, the solvent-accessible disulfide bonds of antibodies or antigen-binding fragments (Fab) thereof are reduced under controlled conditions and further covalently attached with a rebridging agent allowing the incorporation of one payload per disulfide bond. There are many examples of successful rebridging cases providing homogeneous conjugates due to the use of symmetrical reagents, such as dibromomaleimides. However, partial rebridging due to the use of unsymmetrical ones, containing functional groups with different reactivity, usually leads to the development of heterogeneous species that cannot be identified by a simple sodium dodecyl sulfate-polyacrylamide gel eletrophoresis (SDS-PAGE) due to its lack of sensitivity, resolution and low mass accuracy. Mass spectrometry coupled to liquid chromatography (LC-MS) approaches have already been demonstrated as highly promising alternatives for the characterization of newly developed antibody-drug-conjugate (ADC) and monoclonal antibody (mAb)-based formats. We report here the in-depth characterization of covalently rebridged antibodies and Fab fragments in-development, using size-exclusion chromatography hyphenated to mass spectrometry in denaturing conditions (denaturing SEC-MS, dSEC-MS). DSEC-MS was used to monitor closely the rebridging reaction of a conjugated trastuzumab, in addition to conjugated Fab fragments, which allowed an unambiguous identification of the covalently rebridged products along with the unbound species. This all-in-one approach allowed a straightforward analysis of the studied samples with precise mass measurement; critical quality attributes (CQAs) assessment along with rebridging efficiency determination.


Assuntos
Anticorpos Monoclonais , Imunoconjugados , Anticorpos Monoclonais/química , Trastuzumab , Cromatografia Líquida/métodos , Fragmentos Fab das Imunoglobulinas , Imunoconjugados/química , Dissulfetos/química
12.
Sci Total Environ ; 919: 170592, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354814

RESUMO

The expanded uses of bioplastics require understanding the potential health risks associated with their exposure. To address this issue, Drosophila melanogaster as a versatile terrestrial in vivo model was employed, and polylactic acid nanoplastics (PLA-NPLs), as a proxy for bioplastics, were tested as a material model. Effects were determined in larvae exposed for 4 days to different concentrations (25, 100, and 400 µg/mL) of 463.9 ± 129.4 nm PLA-NPLs. Transmission electron microscopy (TEM) and scanning electron microscope (SEM) approaches permitted the detection of PLA-NPLs in the midgut lumen of Drosophila larvae, interacting with symbiotic bacteria. Enzymatic vacuoles were observed as carriers, collecting PLA-NPLs and enabling the crossing of the peritrophic membrane, finally internalizing into enterocytes. Although no toxic effects were observed in egg-to-adult survival, cell uptake of PLA-NPLs causes cytological disturbances and the formation of large vacuoles. The translocation across the intestinal barrier was demonstrated by their presence in the hemolymph. PLA-NPL exposure triggered intestinal damage, oxidative stress, DNA damage, and inflammation responses, as evaluated via a wide set of marker genes. Collectively, these structural and molecular interferences caused by PLA-NPLs generated high levels of oxidative stress and DNA damage in the hemocytes of Drosophila larvae. The observed effects point out the need for further studies aiming to deepen the health risks of bioplastics before adopting their uses as a safe plastic alternative.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Microplásticos/toxicidade , Poliésteres/toxicidade , Biopolímeros/farmacologia
13.
Environ Pollut ; 341: 122968, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979650

RESUMO

Micro and nanoplastics (MNPLs) are emergent environmental pollutants, resulting from the degradation of plastic waste, requiring urgent information on their potential risks to human health. To determine such risks, reliable true-to-life materials are essential. In this work, we have used titanium-doped PET NPLs [PET(Ti)NPLs], obtained by grinding opaque milk polyethylene terephthalate (PET) bottles, as a true-to-life MNPLs model. These opaque PET bottles, with an average size of 112 nm, contain about 3% Ti in the form of titanium dioxide rod nanoparticles. TEM investigation confirmed the mixed Ti/PET nature of the obtained true-to-life NPLs, and the rod shape of the embedded TiO2NPs. In the in vivo Drosophila model neither PET(Ti)NPLs nor TiO2NPs reduced the survival rates, although their internalization was confirmed in different compartments of the larval body by using confocal and transmission electron microscopies. The presence of Ti in the PET(Ti)NPLs permitted to quantify its presence both in larvae (2.1 ± 2.2 µg/g of Ti) and in the resulting adults (3.4 ± 3.2 µg/g of Ti) after treatment with 500 µg/g food of PET(Ti)NPL, suggesting its potential use to track their fate in more complex organisms such as mammals. PET(Ti)NPLs, as well as TiO2NPs, altered the expression of genes driving different response pathways, inducing significant oxidative stress levels (up to 10 folds), and genotoxicity. This last result on the genotoxic effects is remarkable in the frame of the hot topic discussion on the risk that titanium compounds, used as food additives, may pose to humans.


Assuntos
Microplásticos , Polietilenotereftalatos , Animais , Drosophila , Leite/química , Titânio/toxicidade , Titânio/análise
14.
Chemistry ; 30(14): e202303242, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38050774

RESUMO

The chemical bioconjugation of proteins has seen tremendous applications in the past decades, with the booming of antibody-drug conjugates and their use in oncology. While genetic engineering has permitted to produce bespoke proteins featuring key (un-)natural amino acid residues poised for site-selective modifications, the conjugation of native proteins is riddled with selectivity issues. Chemoselective strategies are plentiful and enable the precise modification of virtually any residue with a reactive side-chain; site-selective methods are less common and usually most effective on small and medium-sized proteins. In this context, we studied the application of the Ugi multicomponent reaction for the site-selective conjugation of amine and carboxylate groups on proteins, and antibodies in particular. Through an in-depth mechanistic methodology work supported by peptide mapping studies, we managed to develop a set of conditions allowing the highly selective modification of antibodies bearing N-terminal glutamate and aspartate residues. We demonstrated that this strategy did not alter their affinity toward their target antigen and produced an antibody-drug conjugate with subnanomolar potency. Excitingly, we showed that the high site selectivity of our strategy was maintained on other protein formats, especially on anticalins, for which directed mutagenesis helped to highlight the key importance of a single lysine residue.


Assuntos
Imunoconjugados , Proteínas , Proteínas/química , Lisina/química , Aminoácidos , Anticorpos , Fenômenos Químicos
15.
Anal Bioanal Chem ; 416(2): 519-532, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008785

RESUMO

Antibody-drug conjugates (ADCs) are highly complex proteins mainly due to the structural microvariability of the mAb, along with the additional heterogeneity afforded by the bioconjugation process. Top-down (TD) and middle-down (MD) strategies allow the straightforward fragmentation of proteins to elucidate the conjugated amino acid residues. Nevertheless, these spectra are very crowded with multiple overlapping and unassigned ion fragments. Here we report on the use of dedicated software (ClipsMS) and application of proton transfer charge reduction (PTCR), to respectively expand the fragment ion search space to internal fragments and improve the separation of overlapping fragment ions for a more comprehensive characterization of a recently approved ADC, trastuzumab deruxtecan (T-DXd). Subunit fragmentation allowed between 70 and 90% of sequence coverage to be obtained. Upon addition of internal fragment assignment, the three subunits were fully sequenced, although internal fragments did not contribute significantly to the localization of the payloads. Finally, the use of PTCR after subunit fragmentation provided a moderate sequence coverage increase between 2 and 13%. The reaction efficiently decluttered the fragmentation spectra allowing increasing the number of fragment ions characteristic of the conjugation site by 1.5- to 2.5-fold. Altogether, these results show the interest in the implementation of internal fragment ion searches and more particularly the use of PTCR reactions to increase the number of signature ions to elucidate the conjugation sites and enhance the overall sequence coverage of ADCs, making this approach particularly appealing for its implementation in R&D laboratories.


Assuntos
Imunoconjugados , Prótons , Fluxo de Trabalho , Trastuzumab/química , Imunoconjugados/química , Íons/química
17.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003350

RESUMO

Mesoporous silica nanoparticles (MSNs) are amongst the most used nanoparticles in biomedicine. However, the potentially toxic effects of MSNs have not yet been fully evaluated, being a controversial matter in research. In this study, bare MSNs, PEGylated MSNs (MSNs-PEG), and galacto-oligosaccharide-functionalized MSNs (MSNs-GAL) are synthesized and characterized to assess their genotoxicity and transforming ability on human lung epithelial BEAS-2B cells in short- (48 h) and long-term (8 weeks) exposure scenarios. Initial short-term treatments show a dose-dependent increase in genotoxicity for MSNs-PEG-treated cells but not oxidative DNA damage for MSNs, MSNs-PEG, or for MSNs-GAL. In addition, after 8 weeks of continuous exposure, neither induced genotoxic nor oxidative DNA is observed. Nevertheless, long-term treatment with MSNs-PEG and MSNs-GAL, but not bare MSNs, induces cell transformation features, as evidenced by the cell's enhanced ability to grow independently of anchorage, to migrate, and to invade. Further, the secretome from cells treated with MSNs and MSNs-GAL, but not MSNs-PEG, shows certain tumor-promoting abilities, increasing the number and size of HeLa cell colonies formed in the indirect soft-agar assay. These results show that MSNs, specifically the functionalized ones, provoke some measurable adverse effects linked to tumorigenesis. These effects are in the order of other nanomaterials, such as carbon nanotubes or cerium dioxide nanoparticles, but they are lower than those provoked by some approved drugs, such as doxorubicin or dexamethasone.


Assuntos
Nanopartículas , Nanotubos de Carbono , Humanos , Células HeLa , Dióxido de Silício/toxicidade , Nanopartículas/toxicidade , Polietilenoglicóis , Porosidade
18.
Bioconjug Chem ; 34(12): 2215-2220, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37962868

RESUMO

Bispecific antibodies as T cell engagers designed to display binding capabilities to both tumor-associated antigens and antigens on T cells are considered promising agents in the fight against cancer. Even though chemical strategies to develop such constructs have emerged, a method that readily converts a therapeutically applied antibody into a bispecific construct by a fully non-genetic process is not yet available. Herein, we report the application of a biogenic, tyrosine-based click reaction utilizing chemoenzymatic modifications of native IgG1 antibodies to generate a synthetic bispecific antibody construct that exhibits tumor-killing capability at picomolar concentrations. Control experiments revealed that a covalent linkage of the different components is required for the observed biological activities. In view of the highly potent nature of the constructs and the modular approach that relies on convenient synthetic methods utilizing therapeutically approved biomolecules, our method expedites the production of potent bispecific antibody constructs with tunable cell killing efficacy with significant impact on therapeutic properties.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Linfócitos T , Química Click , Neoplasias/tratamento farmacológico , Anticorpos Biespecíficos/química , Antígenos de Neoplasias/metabolismo
19.
J Pharm Biomed Anal ; 236: 115696, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37713983

RESUMO

Biotherapeutics and their biosimilar versions have been flourishing in the biopharmaceutical market for several years. Structural and functional characterization is needed to achieve analytical biosimilarity through the assessment of critical quality attributes as required by regulatory authorities. The role of analytical strategies, particularly mass spectrometry-based methods, is pivotal to gathering valuable information for the in-depth characterization of biotherapeutics and biosimilarity assessment. Structural mass spectrometry methods (native MS, HDX-MS, top-down MS, etc.) provide information ranging from primary sequence assessment to higher order structure evaluation. This review focuses on recent developments and applications in structural mass spectrometry for biotherapeutic and biosimilar characterization.


Assuntos
Medicamentos Biossimilares , Medicamentos Biossimilares/química , Espectrometria de Massas/métodos , Espectrometria de Massa com Troca Hidrogênio-Deutério
20.
Chemistry ; 29(70): e202302689, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37712523

RESUMO

Peptide and protein bioconjugation sees ever-growing applications in the pharmaceutical sector. Novel strategies and reagents that can address the chemo- and regioselectivity issues inherent to these biomolecules, while delivering stable and functionalizable conjugates, are therefore needed. Herein, we introduce the crosslinking ethynylbenziodazolone (EBZ) reagent JW-AM-005 for the conjugation of peptides and proteins through the selective linkage of cysteine residues. This easily accessed compound gives access to peptide dimers or stapled peptides under mild and tuneable conditions. Applied to the antibody fragment of antigen binding (Fab) species, JW-AM-005 delivered rebridged proteins in a one-pot three-reaction process with high regioselectivity, outperforming the standard reagents commonly used for this transformation.


Assuntos
Cisteína , Iodo , Cisteína/química , Reagentes de Ligações Cruzadas/química , Iodo/química , Proteínas/química , Peptídeos , Indicadores e Reagentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA