Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Nat Commun ; 15(1): 1972, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438351

RESUMO

DNA methylation provides a crucial epigenetic mark linking genetic variations to environmental influence. We have analyzed array-based DNA methylation profiles of 160 human retinas with co-measured RNA-seq and >8 million genetic variants, uncovering sites of genetic regulation in cis (37,453 methylation quantitative trait loci and 12,505 expression quantitative trait loci) and 13,747 DNA methylation loci affecting gene expression, with over one-third specific to the retina. Methylation and expression quantitative trait loci show non-random distribution and enrichment of biological processes related to synapse, mitochondria, and catabolism. Summary data-based Mendelian randomization and colocalization analyses identify 87 target genes where methylation and gene-expression changes likely mediate the genotype effect on age-related macular degeneration. Integrated pathway analysis reveals epigenetic regulation of immune response and metabolism including the glutathione pathway and glycolysis. Our study thus defines key roles of genetic variations driving methylation changes, prioritizes epigenetic control of gene expression, and suggests frameworks for regulation of macular degeneration pathology by genotype-environment interaction in retina.


Assuntos
Metilação de DNA , Degeneração Macular , Humanos , Metilação de DNA/genética , Epigênese Genética , Epigenoma , Degeneração Macular/genética , Retina
2.
Mov Disord ; 39(4): 728-733, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38390630

RESUMO

BACKGROUND: Rapid eye movement (REM) sleep behavior disorder (RBD) is an early feature of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Damaging coding variants in Glucocerebrosidase (GBA1) are a genetic risk factor for RBD. Recently, a population-specific non-coding risk variant (rs3115534) was found to be associated with PD risk and earlier onset in individuals of African ancestry. OBJECTIVES: We aimed to investigate whether the GBA1 rs3115534 PD risk variant is associated with RBD in persons with PD. METHODS: We studied 709 persons with PD and 776 neurologically healthy controls from Nigeria. All DNA samples were genotyped and imputed, and the GBA1 rs3115534 risk variant was extracted. The RBD screening questionnaire (RBDSQ) was used to assess symptoms of possible RBD. RESULTS: RBD was present in 200 PD (28.2%) and 51 (6.6%) controls. We identified that the non-coding GBA1 rs3115534 risk variant is associated with possible RBD in individuals of Nigerian origin (ß, 0.3640; standard error [SE], 0.103, P = 4.093e-04), as well as in all samples after adjusting for PD status (ß, 0.2542; SE, 0.108; P = 0.019) suggesting that although non-coding, this variant may have the same downstream consequences as GBA1 coding variants. CONCLUSIONS: Our results indicate that the non-coding GBA1 rs3115534 risk variant is associated with an increasing number of RBD symptoms in persons with PD of Nigerian origin. Further research is needed to assess if this variant is also associated with polysomnography-defined RBD and with RBD symptoms in DLB. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Glucosilceramidase , Doença de Parkinson , Transtorno do Comportamento do Sono REM , População da África Ocidental , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Predisposição Genética para Doença , Genótipo , Glucosilceramidase/genética , Nigéria , Doença de Parkinson/genética , Doença de Parkinson/complicações , Polimorfismo de Nucleotídeo Único , Transtorno do Comportamento do Sono REM/genética , Adulto Jovem , Adulto
3.
bioRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405931

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder caused by complex genetic and environmental factors. Genome-edited human pluripotent stem cells (hPSCs) offer the uniique potential to advance our understanding of PD etiology by providing disease-relevant cell-types carrying patient mutations along with isogenic control cells. To facilitate this experimental approach, we generated a collection of 55 cell lines genetically engineered to harbor mutations in genes associated with monogenic PD (SNCA A53T, SNCA A30P, PRKN Ex3del, PINK1 Q129X, DJ1/PARK7 Ex1-5del, LRRK2 G2019S, ATP13A2 FS, FBXO7 R498X/FS, DNAJC6 c.801 A>G+FS, SYNJ1 R258Q/FS, VPS13C A444P, VPS13C W395C, GBA1 IVS2+1). All mutations were generated in a fully characterized and sequenced female human embryonic stem cell (hESC) line (WIBR3; NIH approval number NIHhESC-10-0079) using CRISPR/Cas9 or prime editing-based approaches. We implemented rigorous quality controls, including high density genotyping to detect structural variants and confirm the genomic integrity of each cell line. This systematic approach ensures the high quality of our stem cell collection, highlights differences between conventional CRISPR/Cas9 and prime editing and provides a roadmap for how to generate gene-edited hPSCs collections at scale in an academic setting. We expect that our isogenic stem cell collection will become an accessible platform for the study of PD, which can be used by investigators to understand the molecular pathophysiology of PD in a human cellular setting.

4.
Parkinsonism Relat Disord ; 119: 105935, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072719

RESUMO

INTRODUCTION: Substantial heterogeneity between individual patients in the clinical presentation of Parkinson's disease (PD) has led to the classification of distinct PD subtypes. However, genetic susceptibility factors for specific PD subtypes are not well understood. Therefore, the present study aimed to investigate the genetics of PD heterogeneity by performing a genome-wide association study (GWAS) of PD subtypes. METHODS: A total of 799 PD patients were included and classified into tremor-dominant (TD) (N = 345), akinetic-rigid (AR) (N = 227), gait-difficulty (GD) (N = 82), and mixed (MX) (N = 145) phenotypic subtypes. After array genotyping and subsequent imputation, a total of 7,918,344 variants were assessed for association with each PD subtype using logistic regression models that were adjusted for age, sex, and the top five principal components of GWAS data. RESULTS: We identified one genome-wide significant association (P < 5 × 10-8), which was between the MIR3976HG rs7504760 variant and the AR subtype (Odds ratio [OR] = 6.12, P = 2.57 × 10-8). Suggestive associations (P < 1 × 10-6) were observed regarding TD for RP11-497G19.3/RP11-497G19.1 rs7304254 (OR = 3.33, P = 3.89 × 10-7), regarding GD for HES2 rs111473931 (OR = 3.18, P = 6.85 × 10-7), RP11-400D2.3/CTD-2012I17.1 rs149082205 (OR = 8.96, P = 9.08 × 10-7), and RN7SL408P/SGK1 rs56161738 (OR = 2.97, P = 6.19 × 10-7), and regarding MX for MMRN2 rs112991171 (OR = 4.98, P = 1.02 × 10-7). CONCLUSION: Our findings indicate that genetic variation may account for part of the clinical heterogeneity of PD. In particular, we found a novel genome-wide significant association between MIR3976HG variation and the AR PD subtype. Replication of these findings will be important in order to better define the genetic architecture of clinical variability in PD disease presentation.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/complicações , Estudo de Associação Genômica Ampla , Tremor/complicações , Razão de Chances
5.
Brain ; 147(1): 267-280, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38059801

RESUMO

The heterogenous aetiology of Parkinson's disease is increasingly recognized; both mitochondrial and lysosomal dysfunction have been implicated. Powerful, clinically applicable tools are required to enable mechanistic stratification for future precision medicine approaches. The aim of this study was to characterize bioenergetic dysfunction in Parkinson's disease by applying a multimodal approach, combining standardized clinical assessment with midbrain and putaminal 31-phosphorus magnetic resonance spectroscopy (31P-MRS) and deep phenotyping of mitochondrial and lysosomal function in peripheral tissue in patients with recent-onset Parkinson's disease and control subjects. Sixty participants (35 patients with Parkinson's disease and 25 healthy controls) underwent 31P-MRS for quantification of energy-rich metabolites [ATP, inorganic phosphate (Pi) and phosphocreatine] in putamen and midbrain. In parallel, skin biopsies were obtained from all research participants to establish fibroblast cell lines for subsequent quantification of total intracellular ATP and mitochondrial membrane potential (MMP) as well as mitochondrial and lysosomal morphology, using high content live cell imaging. Lower MMP correlated with higher intracellular ATP (r = -0.55, P = 0.0016), higher mitochondrial counts (r = -0.72, P < 0.0001) and higher lysosomal counts (r = -0.62, P = 0.0002) in Parkinson's disease patient-derived fibroblasts only, consistent with impaired mitophagy and mitochondrial uncoupling. 31P-MRS-derived posterior putaminal Pi/ATP ratio variance was considerably greater in Parkinson's disease than in healthy controls (F-tests, P = 0.0036). Furthermore, elevated 31P-MRS-derived putaminal, but not midbrain Pi/ATP ratios (indicative of impaired oxidative phosphorylation) correlated with both greater mitochondrial (r = 0.37, P = 0.0319) and lysosomal counts (r = 0.48, P = 0.0044) as well as lower MMP in both short (r = -0.52, P = 0.0016) and long (r = -0.47, P = 0.0052) mitochondria in Parkinson's disease. Higher 31P-MRS midbrain phosphocreatine correlated with greater risk of rapid disease progression (r = 0.47, P = 0.0384). Our data suggest that impaired oxidative phosphorylation in the striatal dopaminergic nerve terminals exceeds mitochondrial dysfunction in the midbrain of patients with early Parkinson's disease. Our data further support the hypothesis of a prominent link between impaired mitophagy and impaired striatal energy homeostasis as a key event in early Parkinson's disease.


Assuntos
Doença de Parkinson , Humanos , Fosfocreatina/metabolismo , Mitocôndrias/metabolismo , Corpo Estriado/metabolismo , Trifosfato de Adenosina/metabolismo
6.
medRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38076854

RESUMO

Background: Damaging coding variants in GBA1 are a genetic risk factor for rapid eye movement sleep behavior disorder (RBD), which is a known early feature of synucleinopathies. Recently, a population-specific non-coding variant (rs3115534) was found to be associated with PD risk and earlier disease onset in individuals of African ancestry. Objectives: To investigate whether the GBA1 rs3115534 PD risk variant is associated with RBD. Methods: We studied 709 persons with PD and 776 neurologically healthy controls from Nigeria. The GBA1 rs3115534 risk variant status was imputed from previous genotyping for all. Symptoms of RBD were assessed with the RBD screening questionnaire (RBDSQ). Results: The non-coding GBA1 rs3115534 risk variant is associated with possible RBD in individuals of Nigerian origin (Beta = 0.3640, SE = 0.103, P =4.093e-04), as well as after adjusting for PD status (Beta = 0.2542, SE = 0.108, P = 0.019) suggesting that this variant may have the same downstream consequences as GBA1 coding variants. Conclusions: We show that the non-coding GBA1 rs3115534 risk variant is associated with increased RBD symptomatology in Nigerians with PD. Further research is required to assess association with polysomnography-defined RBD.

7.
medRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37986980

RESUMO

Genome-wide genotyping platforms have the capacity to capture genetic variation across different populations, but there have been disparities in the representation of population-dependent genetic diversity. The motivation for pursuing this endeavor was to create a comprehensive genome-wide array capable of encompassing a wide range of neuro-specific content for the Global Parkinson's Genetics Program (GP2) and the Center for Alzheimer's and Related Dementias (CARD). CARD aims to increase diversity in genetic studies, using this array as a tool to foster inclusivity. GP2 is the first supported resource project of the Aligning Science Across Parkinson's (ASAP) initiative that aims to support a collaborative global effort aimed at significantly accelerating the discovery of genetic factors contributing to Parkinson's disease and atypical parkinsonism by generating genome-wide data for over 200,000 individuals in a multi-ancestry context. Here, we present the Illumina NeuroBooster array (NBA), a novel, high-throughput and cost-effective custom-designed content platform to screen for genetic variation in neurological disorders across diverse populations. The NBA contains a backbone of 1,914,934 variants (Infinium Global Diversity Array) complemented with custom content of 95,273 variants implicated in over 70 neurological conditions or traits with potential neurological complications. Furthermore, the platform includes over 10,000 tagging variants to facilitate imputation and analyses of neurodegenerative disease-related GWAS loci across diverse populations. The NBA can identify low frequency variants and accurately impute over 15 million common variants from the latest release of the TOPMed Imputation Server as of August 2023 (reference of over 300 million variants and 90,000 participants). We envisage this valuable tool will standardize genetic studies in neurological disorders across different ancestral groups, allowing researchers to perform genetic research inclusively and at a global scale.

8.
NPJ Parkinsons Dis ; 9(1): 131, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699923

RESUMO

The Global Parkinson's Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia.

9.
Lancet Neurol ; 22(11): 1015-1025, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37633302

RESUMO

BACKGROUND: An understanding of the genetic mechanisms underlying diseases in ancestrally diverse populations is an important step towards development of targeted treatments. Research in African and African admixed populations can enable mapping of complex traits, because of their genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. We aimed to do a comprehensive genome-wide assessment in African and African admixed individuals to better understand the genetic architecture of Parkinson's disease in these underserved populations. METHODS: We performed a genome-wide association study (GWAS) in people of African and African admixed ancestry with and without Parkinson's disease. Individuals were included from several cohorts that were available as a part of the Global Parkinson's Genetics Program, the International Parkinson's Disease Genomics Consortium Africa, and 23andMe. A diagnosis of Parkinson's disease was confirmed clinically by a movement disorder specialist for every individual in each cohort, except for 23andMe, in which it was self-reported based on clinical diagnosis. We characterised ancestry-specific risk, differential haplotype structure and admixture, coding and structural genetic variation, and enzymatic activity. FINDINGS: We included 197 918 individuals (1488 cases and 196 430 controls) in our genome-wide analysis. We identified a novel common risk factor for Parkinson's disease (overall meta-analysis odds ratio for risk of Parkinson's disease 1·58 [95% CI 1·37-1·80], p=2·397 × 10-14) and age at onset at the GBA1 locus, rs3115534-G (age at onset ß=-2·00 [SE=0·57], p=0·0005, for African ancestry; and ß=-4·15 [0·58], p=0·015, for African admixed ancestry), which was rare in non-African or non-African admixed populations. Downstream short-read and long-read whole-genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal. The identified signal seems to be associated with decreased glucocerebrosidase activity. INTERPRETATION: Our study identified a novel genetic risk factor in GBA1 in people of African ancestry, which has not been seen in European populations, and it could be a major mechanistic basis of Parkinson's disease in African populations. This population-specific variant exerts substantial risk on Parkinson's disease as compared with common variation identified through GWAS and it was found to be present in 39% of the cases assessed in this study. This finding highlights the importance of understanding ancestry-specific genetic risk in complex diseases, a particularly crucial point as the Parkinson's disease field moves towards targeted treatments in clinical trials. The distinctive genetics of African populations highlights the need for equitable inclusion of ancestrally diverse groups in future trials, which will be a valuable step towards gaining insights into novel genetic determinants underlying the causes of Parkinson's disease. This finding opens new avenues towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk of Parkinson's disease. FUNDING: The Global Parkinson's Genetics Program, which is funded by the Aligning Science Across Parkinson's initiative, and The Michael J Fox Foundation for Parkinson's Research.


Assuntos
População Africana , Doença de Parkinson , Humanos , População Negra/genética , Loci Gênicos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Doença de Parkinson/etnologia , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , População Africana/genética
10.
Elife ; 122023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589453

RESUMO

Age-associated DNA methylation in blood cells convey information on health status. However, the mechanisms that drive these changes in circulating cells and their relationships to gene regulation are unknown. We identified age-associated DNA methylation sites in six purified blood-borne immune cell types (naive B, naive CD4+ and CD8+ T cells, granulocytes, monocytes, and NK cells) collected from healthy individuals interspersed over a wide age range. Of the thousands of age-associated sites, only 350 sites were differentially methylated in the same direction in all cell types and validated in an independent longitudinal cohort. Genes close to age-associated hypomethylated sites were enriched for collagen biosynthesis and complement cascade pathways, while genes close to hypermethylated sites mapped to neuronal pathways. In silico analyses showed that in most cell types, the age-associated hypo- and hypermethylated sites were enriched for ARNT (HIF1ß) and REST transcription factor (TF) motifs, respectively, which are both master regulators of hypoxia response. To conclude, despite spatial heterogeneity, there is a commonality in the putative regulatory role with respect to TF motifs and histone modifications at and around these sites. These features suggest that DNA methylation changes in healthy aging may be adaptive responses to fluctuations of oxygen availability.


Assuntos
Envelhecimento , Linfócitos T CD8-Positivos , Humanos , Envelhecimento/genética , Ativação do Complemento , Metilação de DNA , Epigênese Genética
11.
Parkinsonism Relat Disord ; 115: 105815, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37611509

RESUMO

INTRODUCTION: Olfactory impairment and Parkinson's disease (PD) may share common genetic and environmental risk factors. This study investigates the association of a PD polygenic risk score (PRS) with olfaction, and whether the associations are modified by environmental exposures of PM2.5, NO2, or smoking. METHODS: This analysis included 3358 women (aged 50-80) from the Sister Study with genetic data and results from the Brief Smell Identification Test (B-SIT) administered in 2018-2019. PD PRS was calculated using 90 single nucleotide polymorphisms. Olfactory impairment was defined with different B-SIT cutoffs, and PD diagnosis was adjudicated via expert review. We report odds ratios (ORs) and 95% confidence intervals (CIs) from multivariable logistic regression. RESULTS: As expected, PD PRS was strongly associated with the odds of having PD (OR highest vs. lowest quartile = 3.79 (1.64, 8.73)). The highest PRS quartile was also associated with olfactory impairment, with OR ranging from 1.24 (0.98, 1.56) for a B-SIT cutoff of 9 to 1.42 (1.04, 1.92) for a cutoff of 6. For individual B-SIT items, the highest PRS quartile was generally associated with lower odds of correctly identifying the odorant, albeit only statistically significant for pineapple (0.72 (0.56, 0.94), soap (0.76 (0.58, 0.99)) and rose (0.70 (0.54, 0.92)). The association of PD PRS with olfactory impairment was not modified by airborne environmental exposures or smoking. CONCLUSION: These preliminary data suggest that high PD genetic susceptibility is associated with olfactory impairment in middle-aged and older women.


Assuntos
Transtornos do Olfato , Doença de Parkinson , Pessoa de Meia-Idade , Humanos , Feminino , Idoso , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Doença de Parkinson/complicações , Olfato/genética , Transtornos do Olfato/genética , Fatores de Risco , Fumar
12.
medRxiv ; 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37398408

RESUMO

Background: Understanding the genetic mechanisms underlying diseases in ancestrally diverse populations is a critical step towards the realization of the global application of precision medicine. The African and African admixed populations enable mapping of complex traits given their greater levels of genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. Methods: Here we perform a comprehensive genome-wide assessment of Parkinson's disease (PD) in 197,918 individuals (1,488 cases; 196,430 controls) of African and African admixed ancestry, characterizing population-specific risk, differential haplotype structure and admixture, coding and structural genetic variation and polygenic risk profiling. Findings: We identified a novel common risk factor for PD and age at onset at the GBA1 locus (risk, rs3115534-G; OR=1.58, 95% CI = 1.37 - 1.80, P=2.397E-14; age at onset, BETA =-2.004, SE =0.57, P = 0.0005), that was found to be rare in non-African/African admixed populations. Downstream short- and long-read whole genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal. However, we identified that this signal mediates PD risk via expression quantitative trait locus (eQTL) mechanisms. While previously identified GBA1 associated disease risk variants are coding mutations, here we suggest a novel functional mechanism consistent with a trend in decreasing glucocerebrosidase activity levels. Given the high population frequency of the underlying signal and the phenotypic characteristics of the homozygous carriers, we hypothesize that this variant may not cause Gaucher disease. Additionally, the prevalence of Gaucher's disease in Africa is low. Interpretation: The present study identifies a novel African-ancestry genetic risk factor in GBA1 as a major mechanistic basis of PD in the African and African admixed populations. This striking result contrasts to previous work in Northern European populations, both in terms of mechanism and attributable risk. This finding highlights the importance of understanding population-specific genetic risk in complex diseases, a particularly crucial point as the field moves toward precision medicine in PD clinical trials and while recognizing the need for equitable inclusion of ancestrally diverse groups in such trials. Given the distinctive genetics of these underrepresented populations, their inclusion represents a valuable step towards insights into novel genetic determinants underlying PD etiology. This opens new avenues towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk. Evidence Before this Study: Our current understanding of Parkinson's disease (PD) is disproportionately based on studying populations of European ancestry, leading to a significant gap in our knowledge about the genetics, clinical characteristics, and pathophysiology in underrepresented populations. This is particularly notable in individuals of African and African admixed ancestries. Over the last two decades, we have witnessed a revolution in the research area of complex genetic diseases. In the PD field, large-scale genome-wide association studies in the European, Asian, and Latin American populations have identified multiple risk loci associated with disease. These include 78 loci and 90 independent signals associated with PD risk in the European population, nine replicated loci and two novel population-specific signals in the Asian population, and a total of 11 novel loci recently nominated through multi-ancestry GWAS efforts.Nevertheless, the African and African admixed populations remain completely unexplored in the context of PD genetics. Added Value of this Study: To address the lack of diversity in our research field, this study aimed to conduct the first genome-wide assessment of PD genetics in the African and African admixed populations. Here, we identified a genetic risk factor linked to PD etiology, dissected African-specific differences in risk and age at onset, characterized known genetic risk factors, and highlighted the utility of the African and African admixed risk haplotype substructure for future fine-mapping efforts. We identified a novel disease mechanism via expression changes consistent with decreased GBA1 activity levels. Future large scale single cell expression studies should investigate the neuronal populations in which expression differences are most prominent. This novel mechanism may hold promise for future efficient RNA-based therapeutic strategies such as antisense oligonucleotides or short interfering RNAs aimed at preventing and decreasing disease risk. We envisage that these data generated under the umbrella of the Global Parkinson's Genetics Program (GP2) will shed light on the molecular mechanisms involved in the disease process and might pave the way for future clinical trials and therapeutic interventions. This work represents a valuable resource in an underserved population, supporting pioneering research within GP2 and beyond. Deciphering causal and genetic risk factors in all these ancestries will help determine whether interventions, potential targets for disease modifying treatment, and prevention strategies that are being studied in the European populations are relevant to the African and African admixed populations. Implications of all the Available Evidence: We nominate a novel signal impacting GBA1 as the major genetic risk factor for PD in the African and African admixed populations. The present study could inform future GBA1 clinical trials, improving patient stratification. In this regard, genetic testing can help to design trials likely to provide meaningful and actionable answers. It is our hope that these findings may ultimately have clinical utility for this underrepresented population.

13.
Res Sq ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37398472

RESUMO

DNA methylation (DNAm) provides a crucial epigenetic mark linking genetic variations to environmental influence. We analyzed array-based DNAm profiles of 160 human retinas with co-measured RNA-seq and > 8 million genetic variants, uncovering sites of genetic regulation in cis (37,453 mQTLs and 12,505 eQTLs) and 13,747 eQTMs (DNAm loci affecting gene expression), with over one-third specific to the retina. mQTLs and eQTMs show non-random distribution and enrichment of biological processes related to synapse, mitochondria, and catabolism. Summary data-based Mendelian randomization and colocalization analyses identify 87 target genes where methylation and gene-expression changes likely mediate the genotype effect on age-related macular degeneration (AMD). Integrated pathway analysis reveals epigenetic regulation of immune response and metabolism including the glutathione pathway and glycolysis. Our study thus defines key roles of genetic variations driving methylation changes, prioritizes epigenetic control of gene expression, and suggests frameworks for regulation of AMD pathology by genotype-environment interaction in retina.

14.
Parkinsonism Relat Disord ; 113: 105517, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37467655

RESUMO

INTRODUCTION: The association between MAPT and PD risk may be subject to ethnic variability even within populations of similar geographical origin. Data on MAPT haplotype frequencies, and its association with PD risk in black Africans are lacking. We aimed to determine the frequencies of MAPT haplotypes and their role as risk factors for PD and age at onset in Nigerians. METHODS: The haplotype and genotype frequencies of MAPT rs1052553 were analysed in 907 individuals with PD and 1022 age-matched healthy controls from the Nigeria Parkinson's Disease Research network cohort. Clinical data related to PD included age at study, age at onset (AAO), and disease duration. RESULTS: The frequency of the H1 haplotype was 98.7% in PD, and 99.1% in controls (p = 0.19). The H2 haplotype was present in - 1.3% of PD and 0.9% of controls (p = 0.24). The most frequent MAPT genotype was H1H1 (PD - 97.5%, controls - 98.2%). The H1 haplotype was not associated with PD risk after accounting for gender and AAO (Odds ratio for H1/H1 vs H1/H2 and H2/H2: 0.68 (95% CI:0.39-1.28); p = 0.23). CONCLUSIONS: Our findings support previous studies that report a low frequency of the MAPT H2 haplotype in black ancestry Africans but document its occurrence in Nigerians. The MAPT H1 haplotype was not associated with an increased risk or age at onset of PD in this cohort.


Assuntos
Doença de Parkinson , Humanos , População Africana , Idade de Início , Alelos , Demografia , Predisposição Genética para Doença/genética , Genótipo , Haplótipos , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Proteínas tau/genética
15.
J Parkinsons Dis ; 13(5): 729-742, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334620

RESUMO

BACKGROUND: Large prospective studies are essential for investigating the environmental causes of Parkinson's disease (PD), but PD diagnosis via clinical exams is often infeasible in such studies. OBJECTIVE: To present case ascertainment strategy and data collection in a US cohort of women. METHODS: In the Sister Study (n = 50,884, baseline ages 55.6±9.0), physician-made PD diagnoses were first reported by participants or their proxies. Cohort-wide follow-up surveys collected data on subsequent diagnoses, medication usage and PD-relevant motor and nonmotor symptoms. We contacted self-reported PD cases and their treating physicians to obtain relevant diagnostic and treatment history. Diagnostic adjudication was made via expert review of all available data, except nonmotor symptoms. We examined associations of nonmotor symptoms with incident PD, using multivariable logistic regression models and reported odds ratio (OR) and 95% confidence intervals (CI). RESULTS: Of the 371 potential PD cases identified, 242 diagnoses were confirmed. Compared with unconfirmed cases, confirmed cases were more likely to report PD diagnosis from multiple sources, medication usage, and motor and nonmotor features consistently during the follow-up. PD polygenic risk score was associated with confirmed PD (ORinter-quartile range = 1.74, 95% CI: 1.45-2.10), but not with unconfirmed cases (corresponding OR = 1.05). Hyposmia, dream-enacting behaviors, constipation, depression, unexplained weight loss, dry eyes, dry mouth, and fatigue were significantly related to PD risk, with ORs from 1.71 to 4.88. Only one of the eight negative control symptoms was associated with incident PD. CONCLUSION: Findings support our PD case ascertainment approach in this large cohort of women. PD prodromal presentation is likely beyond its well-documented profile.


Assuntos
Doença de Parkinson , Humanos , Feminino , Doença de Parkinson/diagnóstico , Doença de Parkinson/epidemiologia , Doença de Parkinson/complicações , Estudos Prospectivos , Fatores de Risco , Inquéritos e Questionários , Saúde Ambiental
16.
Brain ; 146(11): 4622-4632, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37348876

RESUMO

Parkinson's disease has a large heritable component and genome-wide association studies have identified over 90 variants with disease-associated common variants, providing deeper insights into the disease biology. However, there have not been large-scale rare variant analyses for Parkinson's disease. To address this gap, we investigated the rare genetic component of Parkinson's disease at minor allele frequencies <1%, using whole genome and whole exome sequencing data from 7184 Parkinson's disease cases, 6701 proxy cases and 51 650 healthy controls from the Accelerating Medicines Partnership Parkinson's disease (AMP-PD) initiative, the National Institutes of Health, the UK Biobank and Genentech. We performed burden tests meta-analyses on small indels and single nucleotide protein-altering variants, prioritized based on their predicted functional impact. Our work identified several genes reaching exome-wide significance. Two of these genes, GBA1 and LRRK2, have variants that have been previously implicated as risk factors for Parkinson's disease, with some variants in LRRK2 resulting in monogenic forms of the disease. We identify potential novel risk associations for variants in B3GNT3, AUNIP, ADH5, TUBA1B, OR1G1, CAPN10 and TREML1 but were unable to replicate the observed associations across independent datasets. Of these, B3GNT3 and TREML1 could provide new evidence for the role of neuroinflammation in Parkinson's disease. To date, this is the largest analysis of rare genetic variants in Parkinson's disease.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Fatores de Risco , Frequência do Gene , Receptores Imunológicos
17.
Mov Disord ; 38(8): 1493-1502, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37246815

RESUMO

BACKGROUND: Rescue of mitochondrial function is a promising neuroprotective strategy for Parkinson's disease (PD). Ursodeoxycholic acid (UDCA) has shown considerable promise as a mitochondrial rescue agent across a range of preclinical in vitro and in vivo models of PD. OBJECTIVES: To investigate the safety and tolerability of high-dose UDCA in PD and determine midbrain target engagement. METHODS: The UP (UDCA in PD) study was a phase II, randomized, double-blind, placebo-controlled trial of UDCA (30 mg/kg daily, 2:1 randomization UDCA vs. placebo) in 30 participants with PD for 48 weeks. The primary outcome was safety and tolerability. Secondary outcomes included 31-phosphorus magnetic resonance spectroscopy (31 P-MRS) to explore target engagement of UDCA in PD midbrain and assessment of motor progression, applying both the Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS-III) and objective, motion sensor-based quantification of gait impairment. RESULTS: UDCA was safe and well tolerated, and only mild transient gastrointestinal adverse events were more frequent in the UDCA treatment group. Midbrain 31 P-MRS demonstrated an increase in both Gibbs free energy and inorganic phosphate levels in the UDCA treatment group compared to placebo, reflecting improved ATP hydrolysis. Sensor-based gait analysis indicated a possible improvement of cadence (steps per minute) and other gait parameters in the UDCA group compared to placebo. In contrast, subjective assessment applying the MDS-UPDRS-III failed to detect a difference between treatment groups. CONCLUSIONS: High-dose UDCA is safe and well tolerated in early PD. Larger trials are needed to further evaluate the disease-modifying effect of UDCA in PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Ácido Ursodesoxicólico/uso terapêutico , Método Duplo-Cego
18.
Mov Disord ; 38(5): 899-903, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36869417

RESUMO

BACKGROUND: Biallelic pathogenic variants in GBA1 are the cause of Gaucher disease (GD) type 1 (GD1), a lysosomal storage disorder resulting from deficient glucocerebrosidase. Heterozygous GBA1 variants are also a common genetic risk factor for Parkinson's disease (PD). GD manifests with considerable clinical heterogeneity and is also associated with an increased risk for PD. OBJECTIVE: The objective of this study was to investigate the contribution of PD risk variants to risk for PD in patients with GD1. METHODS: We studied 225 patients with GD1, including 199 without PD and 26 with PD. All cases were genotyped, and the genetic data were imputed using common pipelines. RESULTS: On average, patients with GD1 with PD have a significantly higher PD genetic risk score than those without PD (P = 0.021). CONCLUSIONS: Our results indicate that variants included in the PD genetic risk score were more frequent in patients with GD1 who developed PD, suggesting that common risk variants may affect underlying biological pathways. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Doença de Gaucher , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/genética , Doença de Gaucher/complicações , Doença de Gaucher/genética , Transtornos Parkinsonianos/genética , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Fatores de Risco , Mutação
19.
Cell Genom ; 3(3): 100261, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36950378

RESUMO

The Foundational Data Initiative for Parkinson Disease (FOUNDIN-PD) is an international collaboration producing fundamental resources for Parkinson disease (PD). FOUNDIN-PD generated a multi-layered molecular dataset in a cohort of induced pluripotent stem cell (iPSC) lines differentiated to dopaminergic (DA) neurons, a major affected cell type in PD. The lines were derived from the Parkinson's Progression Markers Initiative study, which included participants with PD carrying monogenic PD variants, variants with intermediate effects, and variants identified by genome-wide association studies and unaffected individuals. We generated genetic, epigenetic, regulatory, transcriptomic, and longitudinal cellular imaging data from iPSC-derived DA neurons to understand molecular relationships between disease-associated genetic variation and proximate molecular events. These data reveal that iPSC-derived DA neurons provide a valuable cellular context and foundational atlas for modeling PD genetic risk. We have integrated these data into a FOUNDIN-PD data browser as a resource for understanding the molecular pathogenesis of PD.

20.
medRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993627

RESUMO

Background: The microtubule-associated protein tau ( MAPT ) gene is critical because of its putative role in the causal pathway of neurodegenerative diseases including Parkinson's disease (PD). However, there is a lack of clarity regarding the link between the main H1 haplotype and risk of PD. Inconsistencies in reported association may be driven by genetic variability in the populations studied to date. Data on MAPT haplotype frequencies in the general population and association studies exploring the role of MAPT haplotypes in conferring PD risk in black Africans are lacking. Objectives: To determine the frequencies of MAPT haplotypes and explore the role of the H1 haplotype as a risk factor for PD risk and age at onset in Nigerian Africans. Methods: The haplotype and genotype frequencies of MAPT rs1052553 were analysed using PCR-based KASP™ in 907 individuals with PD and 1,022 age-matched neurologically normal controls from the Nigeria Parkinson's Disease Research (NPDR) network cohort. Clinical data related to PD included age at study, age at onset, and disease duration. Results: The frequency of the main MAPT H1 haplotype in this cohort was 98.7% in individuals with PD, and 99.1% in healthy controls (p=0.19). The H2 haplotype was present in 41/1929 (2.1%) of the cohort (PD - 1.3%; Controls - 0.9%; p=0.24). The most frequent MAPT genotype was H1H1 (PD - 97.5%, controls - 98.2%). The H1 haplotype was not associated with PD risk after accounting for gender and age at onset (Odds ratio for H1/H1 vs H1/H2 and H2/H2: 0.68 (95% CI:0.39-1.28); p=0.23). Conclusions: Our findings support previous studies that report a low frequency of the MAPT H2 haplotype in black ancestry Africans, but document its occurrence in the Nigerian population (2.1%). In this cohort of black Africans with PD, the MAPT H1 haplotype was not associated with an increased risk or age at onset of PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...