Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Proc (Bayl Univ Med Cent) ; 37(4): 679-683, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38910800

RESUMO

Limited English proficiency poses a significant barrier to health care, particularly in US border states, exacerbated by a nationwide shortage of interpreters. This growing disparity in language-concordant care underscores the need for solutions like integrating Medical Spanish Certification (MSC) into medical school curricula, a topic of considerable debate. Various arguments exist for and against including MSC in medical education, especially considering the increasing Hispanic/Latino patient population. This paper aims to present a balanced perspective on officially including MSC in medical school curricula. After discussing the various arguments, the authors suggest a balanced approach that addresses the challenges while leveraging the potential benefits of MSC in medical education.

2.
Sci Rep ; 14(1): 14364, 2024 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-38906940

RESUMO

Despite many interventions, science education remains highly inequitable throughout the world. Internet-enabled experimental learning has the potential to reach underserved communities and increase the diversity of the scientific workforce. Here, we demonstrate the use of lab-on-a-chip (LoC) technologies to expose Latinx life science undergraduate students to introductory concepts of computer programming by taking advantage of open-loop cloud-integrated LoCs. We developed a context-aware curriculum to train students at over 8000 km from the experimental site. Through this curriculum, the students completed an assignment testing bacteria contamination in water using LoCs. We showed that this approach was sufficient to reduce the students' fear of programming and increase their interest in continuing careers with a computer science component. Altogether, we conclude that LoC-based internet-enabled learning can become a powerful tool to train Latinx students and increase the diversity in STEM.


Assuntos
Internet , Estudantes , Humanos , Dispositivos Lab-On-A-Chip , Currículo , Disciplinas das Ciências Biológicas/educação
3.
Artif Organs ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38803239

RESUMO

BACKGROUND: Stroke after durable left ventricular assist device (d-LVAD) implantation portends high mortality. The incidence of ischemic and hemorrhagic stroke and the impact on stroke outcomes of temporary mechanical circulatory support (tMCS) management among patients requiring bridge to d-LVAD with micro-axial flow-pump (mAFP, Abiomed) is unsettled. METHODS: Consecutive patients, who underwent d-LVAD implantation after being bridged with mAFP at 19 institutions, were retrospectively included. The incidence of early ischemic and hemorrhagic stroke after d-LVAD implantation (<60 days) and association of pre-d-LVAD characteristics and peri-procedural management with a specific focus on tMCS strategies were studied. RESULTS: Among 341 patients, who underwent d-LVAD implantation after mAFP implantation (male gender 83.6%, age 58 [48-65] years, mAFP 5.0/5.5 72.4%), the early ischemic stroke incidence was 10.8% and early hemorrhagic stroke 2.9%. The tMCS characteristics (type of mAFP device and access, support duration, upgrade from intra-aortic balloon pump, ECMELLA, ECMELLA at d-LVAD implantation, hemolysis, and bleeding) were not associated with ischemic stroke after d-LVAD implant. Conversely, the device model (mAFP 2.5/CP vs. mAFP 5.0/5.5: HR 5.6, 95%CI 1.4-22.7, p = 0.015), hemolysis on mAFP support (HR 10.5, 95% CI 1.3-85.3, p = 0.028) and ECMELLA at d-LVAD implantation (HR 5.0, 95% CI 1.4-18.7, p = 0.016) were associated with increased risk of hemorrhagic stroke after d-LVAD implantation. Both early ischemic (HR 2.7, 95% CI 1.9-4.5, p < 0.001) and hemorrhagic (HR 3.43, 95% CI 1.49-7.88, p = 0.004) stroke were associated with increased 1-year mortality. CONCLUSIONS: Among patients undergoing d-LVAD implantation following mAFP support, tMCS characteristics do not impact ischemic stroke occurrence, while several factors are associated with hemorrhagic stroke suggesting a proactive treatment target to reduce this complication.

4.
bioRxiv ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38559212

RESUMO

The analysis of tissue cultures, particularly brain organoids, takes a high degree of coordination, measurement, and monitoring. We have developed an automated research platform enabling independent devices to achieve collaborative objectives for feedback-driven cell culture studies. Unified by an Internet of Things (IoT) architecture, our approach enables continuous, communicative interactions among various sensing and actuation devices, achieving precisely timed control of in vitro biological experiments. The framework integrates microfluidics, electrophysiology, and imaging devices to maintain cerebral cortex organoids and monitor their neuronal activity. The organoids are cultured in custom, 3D-printed chambers attached to commercial microelectrode arrays for electrophysiology monitoring. Periodic feeding is achieved using programmable microfluidic pumps. We developed computer vision fluid volume estimations of aspirated media, achieving high accuracy, and used feedback to rectify deviations in microfluidic perfusion during media feeding/aspiration cycles. We validated the system with a 7-day study of mouse cerebral cortex organoids, comparing manual and automated protocols. The automated experimental samples maintained robust neural activity throughout the experiment, comparable with the control samples. The automated system enabled hourly electrophysiology recordings that revealed dramatic temporal changes in neuron firing rates not observed in once-a-day recordings.

5.
Cell Rep Methods ; 4(1): 100686, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38218190

RESUMO

Precise modulation of brain activity is fundamental for the proper establishment and maturation of the cerebral cortex. To this end, cortical organoids are promising tools to study circuit formation and the underpinnings of neurodevelopmental disease. However, the ability to manipulate neuronal activity with high temporal resolution in brain organoids remains limited. To overcome this challenge, we introduce a bioelectronic approach to control cortical organoid activity with the selective delivery of ions and neurotransmitters. Using this approach, we sequentially increased and decreased neuronal activity in brain organoids with the bioelectronic delivery of potassium ions (K+) and γ-aminobutyric acid (GABA), respectively, while simultaneously monitoring network activity. This works highlights bioelectronic ion pumps as tools for high-resolution temporal control of brain organoid activity toward precise pharmacological studies that can improve our understanding of neuronal function.


Assuntos
Córtex Cerebral , Neurônios , Neurônios/fisiologia , Organoides/fisiologia , Encéfalo , Neurotransmissores
6.
Micromachines (Basel) ; 14(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38004856

RESUMO

The electric stimulation (ES) of the cornea is a novel therapeutic approach to the treatment of degenerative visual diseases. Currently, ES is delivered by placing a mono-element electrode on the surface of the cornea that uniformly stimulates the eye along the electrode site. It has been reported that a certain degree of correlation exists between the location of the stimulated retinal area and the position of the electrode. Therefore, in this study, we present the development of a sectioned surface electrode for selective electric stimulation of the human cornea. The proposed device consists of 16 independent microelectrodes, a reference electrode, and 18 contact pads. The microelectrodes have a size of 200 µm × 200 µm, are arranged in a 4 × 4 matrix, and cover a total stimulation area of 16 mm2. The proposed fabrication process, based on surface micromachining technology and flexible electronics, uses only three materials: polyimide, aluminum, and titanium, which allow us to obtain a simplified, ergonomic, and reproducible fabrication process. The fabricated prototype was validated to laboratory level by electrical and electrochemical tests, showing a relatively high electrical conductivity and average impedance from 712 kΩ to 1.4 MΩ at the clinically relevant frequency range (from 11 Hz to 30 Hz). Additionally, the biocompatibility of the electrode prototype was demonstrated by performing in vivo tests and by analyzing the polyimide films using Fourier transform infrared spectroscopy (FTIR). The resulting electrode prototype is robust, mechanically flexible, and biocompatible, with a high potential to be used for selective ES of the cornea.

7.
eNeuro ; 10(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38016807

RESUMO

The introduction of Internet-connected technologies to the classroom has the potential to revolutionize STEM education by allowing students to perform experiments in complex models that are unattainable in traditional teaching laboratories. By connecting laboratory equipment to the cloud, we introduce students to experimentation in pluripotent stem cell (PSC)-derived cortical organoids in two different settings: using microscopy to monitor organoid growth in an introductory tissue culture course and using high-density (HD) multielectrode arrays (MEAs) to perform neuronal stimulation and recording in an advanced neuroscience mathematics course. We demonstrate that this approach develops interest in stem cell and neuroscience in the students of both courses. All together, we propose cloud technologies as an effective and scalable approach for complex project-based university training.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes , Humanos , Organoides , Neurônios
8.
bioRxiv ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37503236

RESUMO

The introduction of internet-connected technologies to the classroom has the potential to revolutionize STEM education by allowing students to perform experiments in complex models that are unattainable in traditional teaching laboratories. By connecting laboratory equipment to the cloud, we introduce students to experimentation in pluripotent stem cell-derived cortical organoids in two different settings: Using microscopy to monitor organoid growth in an introductory tissue culture course, and using high density multielectrode arrays to perform neuronal stimulation and recording in an advanced neuroscience mathematics course. We demonstrate that this approach develops interest in stem cell and neuroscience in the students of both courses. All together, we propose cloud technologies as an effective and scalable approach for complex project-based university training.

10.
bioRxiv ; 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37333351

RESUMO

Precise modulation of brain activity is fundamental for the proper establishment and maturation of the cerebral cortex. To this end, cortical organoids are promising tools to study circuit formation and the underpinnings of neurodevelopmental disease. However, the ability to manipulate neuronal activity with high temporal resolution in brain organoids remains limited. To overcome this challenge, we introduce a bioelectronic approach to control cortical organoid activity with the selective delivery of ions and neurotransmitters. Using this approach, we sequentially increased and decreased neuronal activity in brain organoids with the bioelectronic delivery of potassium ions (K+) and γ-aminobutyric acid (GABA), respectively, while simultaneously monitoring network activity. This works highlights bioelectronic ion pumps as tools for high-resolution temporal control of brain organoid activity toward precise pharmacological studies that can improve our understanding of neuronal function.

11.
bioRxiv ; 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37205466

RESUMO

Despite many interventions, science education remains highly inequitable throughout the world. Among all life sciences fields, Bioinformatics and Computational Biology suffer from the strongest underrepresentation of racial and gender minorities. Internet-enabled project-based learning (PBL) has the potential to reach underserved communities and increase the diversity of the scientific workforce. Here, we demonstrate the use of lab-on-a-chip (LoC) technologies to train Latinx life science undergraduate students in concepts of computer programming by taking advantage of open-loop cloud-integrated LoCs. We developed a context-aware curriculum to train students at over 8,000 km from the experimental site. We showed that this approach was sufficient to develop programming skills and increase the interest of students in continuing careers in Bioinformatics. Altogether, we conclude that LoC-based Internet-enabled PBL can become a powerful tool to train Latinx students and increase the diversity in STEM.

12.
RSC Adv ; 13(13): 9078-9090, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36950073

RESUMO

The Human Immunodeficiency Virus (HIV-1) causes Acquired Immunodeficiency Syndrome (AIDS) and a high percentage of deaths. Therefore, it is necessary to design vaccines against HIV-1 for the prevention of AIDS. Bioinformatic tools and theoretical algorisms allow us to understand the structural proteins of viruses to develop vaccines based on immunogenic peptides (epitopes). In this work, we identified the epitopes: P1, P2, P10, P27 and P30 from the gp120 protein of HIV-1. These peptides were administered intranasally alone or with cholera toxin (CT) to BALB/c mice. The population of CD4+, CD8+ T lymphocytes and B cells (CD19/CD138+, IgA+ and IgG+) from nasal-associated lymphoid tissue, nasal passages, cervical and inguinal nodes was determined by flow cytometry. In addition, anti-peptides IgG and IgA from serum, nasal and vaginal washings were measured by ELISA. The results show that peptides administered by i.n. can modulate the immune response of T and B lymphocyte populations, as well as IgA and IgG antibodies secretion in the different sites analyzed. In conclusion, bioinformatics tools help us to select peptides with physicochemical properties that allow the induction of the humoral and cellular responses that depend on the peptide sequence.

13.
Med Klin Intensivmed Notfmed ; 118(4): 257-262, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36971803

RESUMO

BACKGROUND: Since January 2022, a primary nursing system called process-responsible nursing (PP) has substituted the standard room care system in an intensive care unit (ICU) at our institution. The process of the development and implementation of PP is already being evaluated in a separate study as an actual analysis prior to implementation, as well as after 6 and 12 months. AIM: This pilot randomized controlled trial (RCT) aims to test the feasibility of an RCT. For this purpose, the duration of delirium, among other things, will be compared in the project ICU with the results of standard care in another ICU at the university hospital. As secondary aims, the incidence of delirium, anxiety, the satisfaction of relatives, and the effects of PP on nurses will be assessed. METHODS: It is planned to recruit about 400-500 patients over a period of one year. They will be allocated to PP or standard care. Delirium will be assessed using the Confusion Assessment Method for Intensive Care Units by specifically trained nurses three times a day. Anxiety in patients, the satisfaction of relatives, and the effects of PP on nurses will be evaluated using the numeric rating scale, a standardized questionnaire, and a focus group interview, respectively. EXPECTED RESULTS: The primary hypothesis is that compared to usual care PP reduces the duration of delirium by at least 8 h. Additional hypotheses are that PP reduces anxiety in patients and increases the satisfaction of relatives.


Assuntos
Delírio , Enfermagem Primária , Humanos , Projetos Piloto , Delírio/diagnóstico , Unidades de Terapia Intensiva , Ansiedade , Ensaios Clínicos Controlados Aleatórios como Assunto
14.
Ecol Evol ; 13(2): e9837, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36844667

RESUMO

The Bull Shark (Carcharhinus leucas) faces varying levels of exploitation around the world due to its coastal distribution. Information regarding population connectivity is crucial to evaluate its conservation status and local fishing impacts. In this study, we sampled 922 putative Bull Sharks from 19 locations in the first global assessment of population structure of this cosmopolitan species. Using a recently developed DNA-capture approach (DArTcap), samples were genotyped for 3400 nuclear markers. Additionally, full mitochondrial genomes of 384 Indo-Pacific samples were sequenced. Reproductive isolation was found between and across ocean basins (eastern Pacific, western Atlantic, eastern Atlantic, Indo-West Pacific) with distinct island populations in Japan and Fiji. Bull Sharks appear to maintain gene flow using shallow coastal waters as dispersal corridors, whereas large oceanic distances and historical land-bridges act as barriers. Females tend to return to the same area for reproduction, making them more susceptible to local threats and an important focus for management actions. Given these behaviors, the exploitation of Bull Sharks from insular populations, such as Japan and Fiji, may instigate local decline that cannot readily be replenished by immigration, which can in turn affect ecosystem dynamics and functions. These data also supported the development of a genetic panel to ascertain the population of origin, which will be useful in monitoring the trade of fisheries products and assessing population-level impacts of this harvest.

15.
Parasitol Int ; 92: 102694, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36341836

RESUMO

Hyponeoidae is a copepod family that is rare around the world, with only three species described until now. Recently, a hyponeoid copepod was found in the narrowmouthed catshark, Schroederichthys bivius, from Chile, which has not been formally described. The objective of this study is to describe morphologically a new species of Hyponeoidae, from samples of the Strait of Magellan, Southern Chile. Also, a genetic analysis, based on the COI gene, was used to determine the relatedness of the new hyponeoid species to other copepods from Siphonostomatoida, which were available in the GenBank platform. The new species belongs to the genus Tautochondria and is here described as T. magellanica n. sp. This species differs from T. dolichoura mainly in the presence of long process at each side of the buccal cone, the absence of lobes on the head and short processes on the genital complex. According to the genetic sequences, T. magellanica n. sp. was not closely related to any other species. Therefore, this result confirms that Hyponeoidae is a separate family. However, the relatedness to other genera in Siphonostomatoida is still unknown.


Assuntos
Copépodes , Elasmobrânquios , Animais , Copépodes/genética , Chile , Bases de Dados de Ácidos Nucleicos , Genitália
16.
PLoS One ; 17(12): e0264879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36525407

RESUMO

Defining demographically independent units and understanding patterns of gene flow between them is essential for managing and conserving exploited populations. The critically endangered scalloped hammerhead shark, Sphyrna lewini, is a coastal semi-oceanic species found worldwide in tropical and subtropical waters. Pregnant females give birth in shallow coastal estuarine habitats that serve as nursery grounds for neonates and small juveniles, whereas adults move offshore and become highly migratory. We evaluated the population structure and connectivity of S. lewini in coastal areas and one oceanic island (Cocos Island) across the Eastern Tropical Pacific (ETP) using both sequences of the mitochondrial DNA control region (mtCR) and 9 nuclear-encoded microsatellite loci. The mtCR defined two genetically discrete groups: one in the Mexican Pacific and another one in the central-southern Eastern Tropical Pacific (Guatemala, Costa Rica, Panama, and Colombia). Overall, the mtCR data showed low levels of haplotype diversity ranging from 0.000 to 0.608, while nucleotide diversity ranged from 0.000 to 0.0015. More fine-grade population structure was detected using microsatellite loci where Guatemala, Costa Rica, and Panama differed significantly. Relatedness analysis revealed that individuals within nursery areas were more closely related than expected by chance, suggesting that S. lewini may exhibit reproductive philopatric behaviour within the ETP. Findings of at least two different management units, and evidence of philopatric behaviour call for intensive conservation actions for this highly threatened species in the ETP.


Assuntos
Tubarões , Feminino , Animais , Tubarões/genética , Espécies em Perigo de Extinção , Repetições de Microssatélites/genética , Genética Populacional , DNA Mitocondrial/genética , Aves/genética
17.
J Fish Biol ; 101(6): 1623-1627, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36208114

RESUMO

This study describes the genetic diversity and level of genetic differentiation of the scalloped hammerhead shark Sphyrna lewini from eight putative nursery areas in the Mexican Pacific Ocean, using the mtDNA control region. Genetic analyses revealed a particular spatial divergence between La Reforma and all the remaining sites, with five exclusive haplotypes and the highest genetic diversity. This pattern may be interpreted as the signature of regional female philopatry, relatively to a particular female-mediated gene flow for La Reforma, which shows a strong subdivision in the Gulf of California.


Assuntos
Tubarões , Feminino , Animais , Tubarões/genética , Oceano Pacífico , DNA Mitocondrial/genética , Haplótipos , México
18.
Membranes (Basel) ; 12(4)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35448394

RESUMO

Hollow fiber membranes were produced from a commercial polyvinylidene fluoride (PVDF) polymer, Kynar HSV 900, with a unique sandwich structure consisting of two sponge-like layers connected to the outer and inner skin layers while the middle layer comprises macrovoids. The sponge-like layer allows the membrane to have good mechanical strength even at low skin thickness and favors water vapor transportation during vacuum membrane distillation (VMD). The middle layer with macrovoids helps to significantly reduce the trans-membrane resistance during water vapor transportation from the feed side to the permeate side. Together, these novel structural characteristics are expected to render the PVDF hollow fiber membranes more efficient in terms of vapor flux as well as mechanical integrity. Using the chemistry and process conditions adopted from previous work, we were able to scale up the membrane fabrication from a laboratory scale of 1.5 kg to a manufacturing scale of 50 kg with consistent membrane performance. The produced PVDF membrane, with a liquid entry pressure (LEPw) of >3 bar and a pure water flux of >30 L/m2·hr (LMH) under VMD conditions at 70−80 °C, is perfectly suitable for next-generation high-efficiency membranes for desalination and industrial wastewater applications. The technology translation efforts, including membrane and module scale-up as well as the preliminary pilot-scale validation study, are discussed in detail in this paper.

20.
PeerJ ; 9: e11737, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34466280

RESUMO

The genus Sprattus comprises five species of marine pelagic fishes distributed worldwide in antitropical, temperate waters. Their distribution suggests an ancient origin during a cold period of the earth's history. In this study, we evaluated this hypothesis and corroborated the non-monophyly of the genus Sprattus, using a phylogenetic approach based on DNA sequences of five mitochondrial genome regions. Sprattus sprattus is more closely related to members of the genus Clupea than to other Sprattus species. We also investigated the historical biogeography of the genus, with the phylogenetic tree showing two well-supported clades corresponding to the species distribution in each hemisphere. Time-calibrated phylogenetic analyses showed that an ancient divergence between Northern and Southern Hemispheres occurred at 55.8 MYBP, followed by a diversification in the Oligocene epoch in the Northern Hemisphere clade (33.8 MYBP) and a more recent diversification in the Southern Hemisphere clade (34.2 MYBP). Historical biogeography analyses indicated that the most recent common ancestor (MRCA) likely inhabited the Atlantic Ocean in the Southern Hemisphere. These results suggest that the ancestral population of the MRCA diverged in two populations, one was dispersed to the Northern Hemisphere and the other across the Southern Hemisphere. Given that the Eocene was the warmest epoch since the Paleogene, the ancestral populations would have crossed the tropics through deeper cooler waters, as proposed by the isothermal submergence hypothesis. The non-monophyly confirmed for the genus Sprattus indicates that its systematics should be re-evaluated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...