Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Psychol ; 13: 711821, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35686061

RESUMO

Artificial Intelligence is making rapid and remarkable progress in the development of more sophisticated and powerful systems. However, the acknowledgement of several problems with modern machine learning approaches has prompted a shift in AI benchmarking away from task-oriented testing (such as Chess and Go) towards ability-oriented testing, in which AI systems are tested on their capacity to solve certain kinds of novel problems. The Animal-AI Environment is one such benchmark which aims to apply the ability-oriented testing used in comparative psychology to AI systems. Here, we present the first direct human-AI comparison in the Animal-AI Environment, using children aged 6-10 (n = 52). We found that children of all ages were significantly better than a sample of 30 AIs across most of the tests we examined, as well as performing significantly better than the two top-scoring AIs, "ironbar" and "Trrrrr," from the Animal-AI Olympics Competition 2019. While children and AIs performed similarly on basic navigational tasks, AIs performed significantly worse in more complex cognitive tests, including detour tasks, spatial elimination tasks, and object permanence tasks, indicating that AIs lack several cognitive abilities that children aged 6-10 possess. Both children and AIs performed poorly on tool-use tasks, suggesting that these tests are challenging for both biological and non-biological machines.

3.
Sci Rep ; 11(1): 22822, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819537

RESUMO

Success in all sorts of situations is the most classical interpretation of general intelligence. Under limited resources, however, the capability of an agent must necessarily be limited too, and generality needs to be understood as comprehensive performance up to a level of difficulty. The degree of generality then refers to the way an agent's capability is distributed as a function of task difficulty. This dissects the notion of general intelligence into two non-populational measures, generality and capability, which we apply to individuals and groups of humans, other animals and AI systems, on several cognitive and perceptual tests. Our results indicate that generality and capability can decouple at the individual level: very specialised agents can show high capability and vice versa. The metrics also decouple at the population level, and we rarely see diminishing returns in generality for those groups of high capability. We relate the individual measure of generality to traditional notions of general intelligence and cognitive efficiency in humans, collectives, non-human animals and machines. The choice of the difficulty function now plays a prominent role in this new conception of generality, which brings a quantitative tool for shedding light on long-standing questions about the evolution of general intelligence and the evaluation of progress in Artificial General Intelligence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...