Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7792, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36526657

RESUMO

Dysregulation of mTOR complex 1 (mTORC1) activity drives neuromuscular junction (NMJ) structural instability during aging; however, downstream targets mediating this effect have not been elucidated. Here, we investigate the roles of two mTORC1 phosphorylation targets for mRNA translation, ribosome protein S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), in regulating NMJ structural instability induced by aging and sustained mTORC1 activation. While myofiber-specific deletion of S6k1 has no effect on NMJ structural integrity, 4EBP1 activation in murine muscle induces drastic morphological remodeling of the NMJ with enhancement of synaptic transmission. Mechanistically, structural modification of the NMJ is attributed to increased satellite cell activation and enhanced post-synaptic acetylcholine receptor (AChR) turnover upon 4EBP1 activation. Considering that loss of post-synaptic myonuclei and reduced NMJ turnover are features of aging, targeting 4EBP1 activation could induce NMJ renewal by expanding the pool of post-synaptic myonuclei as an alternative intervention to mitigate sarcopenia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Junção Neuromuscular , Transmissão Sináptica , Animais , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Músculos/metabolismo , Junção Neuromuscular/metabolismo , Fosforilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Sci Rep ; 12(1): 4837, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35319008

RESUMO

Cartilage tissue engineering, particularly micropattern, can influence the biophysical properties of mesenchymal stem cells (MSCs) leading to chondrogenesis. In this research, human Wharton's jelly MSCs (hWJ-MSCs) were grown on a striped micropattern containing spider silk protein (spidroin) from Argiope appensa. This research aims to direct hWJ-MSCs chondrogenesis using micropattern made of spidroin bioink as opposed to fibronectin that often used as the gold standard. Cells were cultured on striped micropattern of 500 µm and 1000 µm width sizes without chondrogenic differentiation medium for 21 days. The immunocytochemistry result showed that spidroin contains RGD sequences and facilitates cell adhesion via integrin ß1. Chondrogenesis was observed through the expression of glycosaminoglycan, type II collagen, and SOX9. The result on glycosaminoglycan content proved that 1000 µm was the optimal width to support chondrogenesis. Spidroin micropattern induced significantly higher expression of SOX9 mRNA on day-21 and SOX9 protein was located inside the nucleus starting from day-7. COL2A1 mRNA of spidroin micropattern groups was downregulated on day-21 and collagen type II protein was detected starting from day-14. These results showed that spidroin micropattern enhances chondrogenic markers while maintains long-term upregulation of SOX9, and therefore has the potential as a new method for cartilage tissue engineering.


Assuntos
Fibroínas , Células-Tronco Mesenquimais , Geleia de Wharton , Diferenciação Celular , Células Cultivadas , Condrogênese , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Fibroínas/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...