Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(3): e0110723, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38376221

RESUMO

Ovine herpesvirus-2 causes sheep-associated malignant catarrhal fever, a fatal disease of ruminants and pigs. The virus is carried by sheep, and infection is typically subclinical. Here, we report the coding complete genome sequence of a strain of OvHV-2 obtained from a clinically affected domestic lamb.

2.
Pathogens ; 12(4)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37111445

RESUMO

Theileria orientalis Ikeda has caused an epidemic of bovine anemia and abortion across several U.S. states. This apicomplexan hemoparasite is transmitted by Haemaphysalis longicornis ticks; however, it is unknown if other North American ticks are competent vectors. Since the disease movement is largely determined by the host tick range(s), the prediction of the T. orientalis spread among U.S. cattle populations requires determination of additional competent tick vectors. Although Rhipicephalus microplus has mostly been eradicated from the U.S., outbreaks in populations occur frequently, and the U.S. remains at risk for reintroduction. Since R. microplus is a vector of Theileria equi and T. orientalis DNA has been detected in R. microplus, the goal of this study was to determine whether R. microplus is a competent vector of T. orientalis. Larval R. microplus were applied to a splenectomized, T. orientalis Ikeda-infected calf for parasite acquisition, removed as molted adults, and applied to two T. orientalis naïve, splenectomized calves for transmission. After 60 days, the naïve calves remained negative for T. orientalis by PCR and cytology. Additionally, T. orientalis was not detected in the salivary glands or larval progeny of acquisition-fed adults. These data suggest that R. microplus is not a competent vector of the U.S. T. orientalis Ikeda isolate.

3.
J Wildl Dis ; 58(2): 257-268, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104345

RESUMO

As part of a respiratory pathogen survey of Alaska wildlife, we conducted a concordance study to assess Mycoplasma ovipneumoniae detection among three different PCR assays using a total of 346 nasal swabs sampled from four species (Dall's sheep, Ovis dalli dalli; mountain goats, Oreamnos americanus; caribou, Rangifer tarandus granti; and moose, Alces alces gigas), and two taxonomic subfamilies (Bovidae subfamily Caprinae and Cervidae subfamily Capreolinae). A federal research laboratory performed two PCR assays (LM40 and intergenic spacer region [IGS]), and a state diagnostic laboratory performed the third (universal Mycoplasma [UM]). Overall concordance was good, ranging from 93% to 99%, which was probably a result of low detection rate of M. ovipneumoniae. Due to differences in positive agreement, the quality of concordance between LM40 and both IGS and UM was considered fair. However, the quality of concordance between IGS and UM was excellent. All three PCR methods detected M. ovipneumoniae in a non-Caprinae species (caribou), and the LM40-PCR assay also detected M. ovipneumoniae in additional Caprinae species. The LM40-PCR assay detected M. ovipneumoniae in a larger number of samples than did the other two assays (IGS, UM). Because of potential differences in detection rates, it is critical to consider test parameters when evaluating a host population for the presence of M. ovipneumoniae.


Assuntos
Cervos , Mycoplasma ovipneumoniae , Pneumonia por Mycoplasma , Rena , Doenças dos Ovinos , Animais , Animais Selvagens , Pneumonia por Mycoplasma/diagnóstico , Pneumonia por Mycoplasma/epidemiologia , Pneumonia por Mycoplasma/veterinária , Ruminantes , Ovinos , Doenças dos Ovinos/diagnóstico
4.
Transbound Emerg Dis ; 69(5): e1460-e1468, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35166453

RESUMO

A novel respiratory-associated Mycoplasma species (M. sp. nov.) of unknown clinical significance was recently identified that causes false positive results with multiple published PCR methods reported to specifically detect Mycoplasma ovipneumonaie, a well-known respiratory pathogen in small ruminants. This necessitates our objective to develop a real-time PCR (qPCR) assay for improved specificity and sensitivity, and more rapid detection and differentiation of M. ovipneumoniae and the M. sp. nov. in domestic sheep (DS) and domestic goat (DG) samples, as compared to a conventional PCR and sequencing (cPCR-seq) assay. Primers and probes were designed based on available M. ovipneumoniae 16S rRNA gene sequences in the GenBank database, and partial 16S rRNA gene sequences provided by the United States Department of Agriculture, Agricultural Research Service (USDA-ARS) for M. ovipneumoniae and M. sp. nov. USDA-ARS provided DS (n = 153) and DG (n = 194) nasal swab nucleic acid that previously tested positive for either M. ovipneumoniae (n = 117) or M. sp. nov. (n = 138), or negative for both targets (n = 92) by cPCR-seq. A host 18S rRNA gene was included as an internal control to monitor for the failure of nucleic acid extraction and possible PCR inhibition. For samples positive by cPCR-seq, qPCR agreement was 88.0% (103/117; κ = 0.81) and 89.9% (124/138; κ = 0.84) for M. ovipneumoniae and M. sp. nov., respectively; 12 of 255 (4.7%) cPCR-seq positive samples were qPCR positive for both targets. Of samples negative by cPCR for both mycoplasmas, qPCR detected M. ovipneumoniae and M. sp. nov. in 6.5% (6/92) and 4.3% (4/92), respectively. Samples with discordant results between the cPCR and sequencing assay and the new qPCR were analyzed by target sequencing; successfully sequenced samples had identity matches that confirmed the qPCR result. The increased target specificity of this qPCR is predicted to increase testing accuracy as compared to other published assays.


Assuntos
Doenças das Cabras , Mycoplasma ovipneumoniae , Mycoplasma , Doenças dos Ovinos , Animais , Doenças das Cabras/diagnóstico , Cabras , Mycoplasma/genética , Mycoplasma ovipneumoniae/genética , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Ovinos , Doenças dos Ovinos/diagnóstico , Carneiro Doméstico
5.
Infect Immun ; 89(11): e0016621, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34338549

RESUMO

Vector-borne pathogens commonly establish multistrain infections, also called complex infections. How complex infections are established, either before or after the development of an adaptive immune response, termed coinfection or superinfection, respectively, has broad implications for the maintenance of genetic diversity, pathogen phenotype, epidemiology, and disease control strategies. Anaplasma marginale, a genetically diverse, obligate, intracellular, tick-borne bacterial pathogen of cattle, commonly establishes complex infections, particularly in regions with high transmission rates. Both coinfection and superinfection can be established experimentally; however, it is unknown how complex infections develop in a natural transmission setting. To address this question, we introduced naive animals into a herd in southern Ghana with a high infection prevalence and high transmission pressure and tracked the strain acquisition of A. marginale through time using multilocus sequence typing. As expected, the genetic diversity among strains was high, and 97% of animals in the herd harbored multiple strains. All the introduced naive animals became infected, and three to four strains were typically detected in an individual animal prior to seroconversion, while one to two new strains were detected in an individual animal following seroconversion. On average, the number of strains acquired via superinfection was 16% lower than the number acquired via coinfection. Thus, while complex infections develop via both coinfection and superinfection, coinfection predominates in this setting. These findings have broad implications for the development of control strategies in high-transmission settings.


Assuntos
Anaplasma marginale/genética , Anaplasmose/microbiologia , Coinfecção/microbiologia , Superinfecção/microbiologia , Alelos , Anaplasmose/etiologia , Anaplasmose/transmissão , Animais , Bovinos , Coinfecção/etiologia , Superinfecção/etiologia
6.
PLoS One ; 16(7): e0247209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34252097

RESUMO

Mycoplasma ovipneumoniae contributes to polymicrobial pneumonia in domestic sheep. Elucidation of host genetic influences of M. ovipneumoniae nasal detection has the potential to reduce the incidence of polymicrobial pneumonia in sheep through implementation of selective breeding strategies. Nasal mucosal secretions were collected from 647 sheep from a large US sheep flock. Ewes of three breeds (Polypay n = 222, Rambouillet n = 321, and Suffolk n = 104) ranging in age from one to seven years, were sampled at three different times in the production cycle (February, April, and September/October) over four years (2015 to 2018). The presence and DNA copy number of M. ovipneumoniae was determined using a newly developed species-specific qPCR. Breed (P<0.001), age (P<0.024), sampling time (P<0.001), and year (P<0.001) of collection affected log10 transformed M. ovipneumoniae DNA copy number, where Rambouillet had the lowest (P<0.0001) compared with both Polypay and Suffolk demonstrating a possible genetic component to detection. Samples from yearlings, April, and 2018 had the highest (P<0.046) detected DNA copy number mean. Sheep genomic DNA was genotyped with the Illumina OvineHD BeadChip. Principal component analysis identified most of the variation in the dataset was associated with breed. Therefore, genome wide association analysis was conducted with a mixed model (EMMAX), with principal components 1 to 6 as fixed and a kinship matrix as random effects. Genome-wide significant (P<9x10-8) SNPs were identified on chromosomes 6 and 7 in the all-breed analysis. Individual breed analysis had genome-wide significant (P<9x10-8) SNPs on chromosomes 3, 4, 7, 9, 10, 15, 17, and 22. Annotated genes near these SNPs are part of immune (ANAPC7, CUL5, TMEM229B, PTPN13), gene translation (PIWIL4), and chromatin organization (KDM2B) pathways. Immune genes are expected to have increased expression when leukocytes encounter M. ovipneumoniae which would lead to chromatin reorganization. Work is underway to narrow the range of these associated regions to identify the underlying causal mutations.


Assuntos
Mycoplasma ovipneumoniae/fisiologia , Carneiro Doméstico/genética , Carneiro Doméstico/microbiologia , Animais , Estudo de Associação Genômica Ampla , Genótipo , Pulmão/microbiologia , Ovinos , Carneiro Doméstico/imunologia
7.
Comp Immunol Microbiol Infect Dis ; 76: 101641, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33689940

RESUMO

Mycoplasma ovipneumoniae is a respiratory pathogen that impacts domestic sheep (Ovis aries; DS) and bighorn sheep (Ovis canadensis; BHS). BHS are reported to be more susceptible than DS to developing polymicrobial pneumonia associated with M. ovipneumoniae infection. Using formalin-fixed paraffin-embedded tissues, we performed a retrospective study investigating the pulmonary immune response of DS and BHS to M. ovipneumoniae infection. M. ovipneumoniae infected DS exhibited a more robust and well-organized BALT formation as compared to BHS. Digital analysis of immunohistochemical chromogen deposition in lung tissue was used to quantitate T cell marker CD3, B cell markers CD20 and CD79a, macrophage markers CD163 and Iba1, and cytokine IL-17. A significant interaction of species and infection status was identified for CD3, CD163, and IL-17. BHS had a greater increase in bronchiolar CD3 and bronchiolar and alveolar CD163 with infection, as compared to DS. BHS had an increase in bronchiolar associated lymph tissue (BALT) and alveolar IL-17 with infection, while these remained similar in DS regardless of infection status. IL-17 in respiratory epithelium of bronchi and bronchioles comparatively decreased in DS and increased in BHS with infection. These data begin to define the interspecies differential immune response to pulmonary M. ovipneumoniae infection in DS and BHS and provide the first investigations of respiratory epithelium-associated IL-17 in ovine.


Assuntos
Pneumonia por Mycoplasma , Doenças dos Ovinos , Carneiro da Montanha , Animais , Pulmão , Pneumonia por Mycoplasma/veterinária , Estudos Retrospectivos , Ovinos , Carneiro Doméstico
8.
Parasit Vectors ; 14(1): 157, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726815

RESUMO

BACKGROUND: Theileria orientalis is a tick-borne hemoparasite that causes anemia, ill thrift, and death in cattle globally. The Ikeda strain of T. orientalis is more virulent than other strains, leading to severe clinical signs and death of up to 5% of affected animals. Within the Asia-Pacific region, where it affects 25% of Australian cattle, T. orientalis Ikeda has a significant economic impact on the cattle industry. In 2017, T. orientalis Ikeda was detected in a cattle herd in Albermarle County, Virginia, United States. Months earlier, the U.S. was alerted to the invasion of the Asian longhorned tick, Haemaphysalis longicornis, throughout the eastern U.S. Abundant H. longicornis ticks were identified on cattle in the T. orientalis-affected herd in VA, and a subset of ticks from the environment were PCR-positive for T. orientalis Ikeda. A strain of T. orientalis from a previous U.S. outbreak was not transmissible by H. longicornis; however, H. longicornis is the primary tick vector of T. orientalis Ikeda in other regions of the world. Thus, the objective of this study was to determine whether invasive H. longicornis ticks in the U.S. are competent vectors of T. orientalis Ikeda. METHODS: Nymphal H. longicornis ticks were fed on a splenectomized calf infected with the VA-U.S.-T. orientalis Ikeda strain. After molting, a subset of adult ticks from this cohort were dissected, and salivary glands assayed for T. orientalis Ikeda via qPCR. The remaining adult ticks from the group were allowed to feed on three calves. Calves were subsequently monitored for T. orientalis Ikeda infection via blood smear cytology and PCR. RESULTS: After acquisition feeding on a VA-U.S.-T. orientalis Ikeda-infected calf as nymphs, a subset of molted adult tick salivary glands tested positive by qPCR for T. orientalis Ikeda. Adult ticks from the same cohort successfully transmitted T. orientalis Ikeda to 3/3 naïve calves, each of which developed parasitemia reaching 0.4-0.9%. CONCLUSIONS: Our findings demonstrate that U.S. H. longicornis ticks are competent vectors of the VA-U.S.-T. orientalis Ikeda strain. This data provides important information for the U.S. cattle industry regarding the potential spread of this parasite and the necessity of enhanced surveillance and control measures.


Assuntos
Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/transmissão , Surtos de Doenças/veterinária , Genótipo , Theileria/genética , Theileriose/transmissão , Carrapatos/parasitologia , Animais , Ásia , Bovinos , Masculino , Parasitemia/epidemiologia , Theileria/isolamento & purificação , Theileriose/parasitologia , Estados Unidos/epidemiologia
9.
Microbiol Resour Announc ; 10(8)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632866

RESUMO

The mycoplasmas represent a large and diverse group of bacteria, many of which are pathogens of humans and animals. Here, we describe a draft genome sequence of a novel Mycoplasma species. This novel Mycoplasma species has potential to cause false-positive PCR results for Mycoplasma ovipneumoniae, a respiratory-associated pathogen of ruminants.

10.
Int J Parasitol ; 51(2-3): 123-136, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33069745

RESUMO

Throughout their life cycle, Babesia parasites alternate between a mammalian host, where they cause babesiosis, and the tick vector. Transition between hosts results in distinct environmental signals that influence patterns of gene expression, consistent with the morphological and functional changes operating in the parasites during their life stages. In addition, comparing differential patterns of gene expression among mammalian and tick parasite stages can provide clues for developing improved methods of control. Hereby, we upgraded the genome assembly of Babesia bovis, a bovine hemoparasite, closing a 139 kbp gap, and used RNA-Seq datasets derived from mammalian blood and tick kinete stages to update the genome annotation. Of the originally annotated genes, 1,254 required structural changes, and 326 new genes were identified, leading to a different predicted proteome compared to the original annotation. Next, the RNA-Seq data was used to identify B. bovis genes that were differentially expressed in the vertebrate and arthropod hosts. In blood stages, 28% of the genes were upregulated up to 300 fold, whereas 26% of the genes in kinetes, a tick stage, were upregulated up to >19,000 fold. We thus discovered differentially expressed genes that may play key biological roles and serve as suitable targets for the development of vaccines to control bovine babesiosis.


Assuntos
Babesia bovis , Babesia , Babesiose , Doenças dos Bovinos , Animais , Babesia/genética , Babesia bovis/genética , Bovinos , Expressão Gênica , Estágios do Ciclo de Vida
11.
Data Brief ; 33: 106533, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33294524

RESUMO

Babesia bovis is a hemoprotozoan parasite of cattle that has a complex life cycle within vertebrate and invertebrate hosts. In the mammalian host, B. bovis undergoes asexual reproduction while in the tick midgut, gametes are induced, fuse, and form zygotes. The zygote infects tick gut epithelial cells and transform into kinetes that are released into the hemolymph and invade other tick tissues such as the ovaries, resulting in transovarial transmission to tick offspring. To compare gene regulation between different B. bovis life stages, we collected parasites infecting bovine erythrocytes and tick hemolymph. Total RNA samples were isolated, and multiplexed libraries sequenced using paired-end 100 cycle reads of a HiSeq 2500. The data was normalized using the TMM method and analysed for significant differential expression using the generalized linear model likelihood ratio test (GLM LRT) in edgeR. To validate our datasets, ten genes were selected using NormFinder. Genes that had no significant fold change between the blood and tick stages in the RNA-Seq datasets were tested by quantitative PCR to determine their suitability as "housekeeping" genes. The normalized RNA-Seq data revealed genes upregulated during infection of the mammalian host or tick vector and six upregulated genes were validated by quantitative PCR. These datasets can help identify useful targets for controlling bovine babesiosis.

12.
Front Genet ; 11: 612031, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488675

RESUMO

Alveolar macrophages function in innate and adaptive immunity, wound healing, and homeostasis in the lungs dependent on tissue-specific gene expression under epigenetic regulation. The functional diversity of tissue resident macrophages, despite their common myeloid lineage, highlights the need to study tissue-specific regulatory elements that control gene expression. Increasing evidence supports the hypothesis that subtle genetic changes alter sheep macrophage response to important production pathogens and zoonoses, for example, viruses like small ruminant lentiviruses and bacteria like Coxiella burnetii. Annotation of transcriptional regulatory elements will aid researchers in identifying genetic mutations of immunological consequence. Here we report the first genome-wide survey of regulatory elements in any sheep immune cell, utilizing alveolar macrophages. We assayed histone modifications and CTCF enrichment by chromatin immunoprecipitation with deep sequencing (ChIP-seq) in two sheep to determine cis-regulatory DNA elements and chromatin domain boundaries that control immunity-related gene expression. Histone modifications included H3K4me3 (denoting active promoters), H3K27ac (active enhancers), H3K4me1 (primed and distal enhancers), and H3K27me3 (broad silencers). In total, we identified 248,674 reproducible regulatory elements, which allowed assignment of putative biological function in macrophages to 12% of the sheep genome. Data exceeded the FAANG and ENCODE standards of 20 million and 45 million useable fragments for narrow and broad marks, respectively. Active elements showed consensus with RNA-seq data and were predictive of gene expression in alveolar macrophages from the publicly available Sheep Gene Expression Atlas. Silencer elements were not enriched for expressed genes, but rather for repressed developmental genes. CTCF enrichment enabled identification of 11,000 chromatin domains with mean size of 258 kb. To our knowledge, this is the first report to use immunoprecipitated CTCF to determine putative topological domains in sheep immune cells. Furthermore, these data will empower phenotype-associated mutation discovery since most causal variants are within regulatory elements.

13.
Prev Vet Med ; 171: 104750, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31472359

RESUMO

Mycoplasma ovis is a hemotropic bacterium reported to infect sheep, goats, and deer species. Infection in these species can result in anemia, jaundice, and ill-thrift. Although of worldwide distribution, only rare reports of this bacterium in the United States exist. The objectives of this retrospective study were to identify the prevalence and distribution of M. ovis, and identify associated demographic and management risk factors, and reproductive and production outcomes associated with infection on domestic sheep (Ovis aries) operations in the United States. As part of the United States Department of Agriculture (USDA), Animal Plant Health Inspection Service, Veterinary Services' National Animal Health Monitoring System (NAHMS) Sheep 2001 and 2011 studies, blood was collected and sera banked from 21,369 ewes in 2001 and 13,128 ewes in 2011. Participating premises were located in 22 states across the United States for each sample year. In 2015 the USDA, Agricultural Research Service, Animal Disease Research Unit received aliquots of these sera, and DNA was extracted and analyzed by PCR for the presence of M. ovis genomic DNA. Flock presence and mean within-flock prevalence of M. ovis were 73.3% and 23.2%, respectively. Model selection using Mallow's Cp Criterion was used to determine which variables significantly affected flock presence and within-flock prevalence. The final flock presence model included flock size, year of blood collection, region, and vaccine administration. The final within-flock prevalence model included year of blood collection, interaction between flock size and region, and interaction between reported abortions and grazing with sheep from other operations. Medium and large operations had a higher flock presence and within-flock prevalence. Flock presence was higher in operations that administered any vaccines. Operations that reported any abortions and grazed with sheep from other operations had a higher within-flock prevalence.


Assuntos
Infecções por Mycoplasma/veterinária , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/microbiologia , Criação de Animais Domésticos/métodos , Animais , Mycoplasma/isolamento & purificação , Infecções por Mycoplasma/sangue , Infecções por Mycoplasma/epidemiologia , Reação em Cadeia da Polimerase/veterinária , Prevalência , Fatores de Risco , Ovinos , Doenças dos Ovinos/sangue , Inquéritos e Questionários , Estados Unidos/epidemiologia , United States Department of Agriculture , Vacinação/estatística & dados numéricos
14.
PLoS One ; 14(4): e0215605, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31002724

RESUMO

Recombinant herpesvirus vaccine vectors offer distinct advantages in next-generation vaccine development, primarily due to the ability to establish persistent infections to provide sustainable antigen responses in the host. Recombinant bovine herpesvirus-4 (BoHV-4) has been previously shown to elicit protective immunity in model laboratory animal species against a variety of pathogens. For the first time, we describe the induction of antigen-specific immune responses to two delivered antigens in the host species after intranasal nebulization of recombinant BoHV-4 expressing the chimeric peptide containing the bovine viral diarrhea virus (BVDV) glycoprotein E2 and the bovine herpesvirus 1 (BoHV-1) glycoprotein D (BoHV-4-A-CMV-IgK-gE2gD-TM). In this study, four cattle were immunized via intranasal nebulization with the recombinant BoHV-4 construct. Two of the cattle were previously infected with wild-type BoHV-4, and both developed detectable serologic responses to BVDV and BoHV-1. All four immunized cattle developed detectable viral neutralizing antibody responses to BVDV, and one steer developed a transient viral neutralizing response to BoHV-1. Approximately one year after immunization, immunosuppressive doses of the glucocorticoid dexamethasone were administered intravenously to all four cattle. Within two weeks of immunosuppression, all animals developed viral neutralizing antibody responses to BoHV-1, and all animals maintained BVDV viral neutralizing capacity. Overall, nebulization of BoHV-4-A-CMV-IgK-gE2gD-TM persistently infects cattle, is capable of eliciting antigen-specific immunity following immunization, including in the presence of pre-existing BoHV-4 immunity, and recrudescence of the virus boosts the immune response to BoHV-4-vectored antigens. These results indicate that BoHV-4 is a viable and attractive vaccine delivery platform for use in cattle.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , DNA Recombinante/imunologia , Herpesvirus Bovino 4/imunologia , Vacinas Sintéticas/imunologia , Administração Intranasal , Animais , Antígenos Virais/imunologia , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/virologia , DNA Recombinante/genética , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina/imunologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/imunologia , Herpesvirus Bovino 4/genética , Nebulizadores e Vaporizadores , Vacinação/métodos , Vacinação/veterinária , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/imunologia
15.
Emerg Infect Dis ; 24(12): 2384-2386, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30457547

RESUMO

Elucidating the emergence of Mycoplasma ovipneumoniae-associated respiratory disease in ruminants requires identification of the pathogen host range. This bacterium was thought to be host restricted to subfamily Caprinae, but we describe its identification in healthy moose, caribou, and mule deer and diseased mule and white-tailed deer, all species in subfamily Capreolinae.


Assuntos
Doenças dos Animais/microbiologia , Animais Selvagens , Mycoplasma ovipneumoniae , Pneumonia por Mycoplasma/veterinária , Doenças dos Animais/diagnóstico , Animais , Cervos , Rena
16.
Int J Parasitol ; 48(9-10): 679-690, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29885436

RESUMO

A novel apicomplexan parasite was serendipitously discovered in horses at the United States - Mexico border. Phylogenetic analysis based on 18S rDNA showed the erythrocyte-infective parasite to be related to, but distinct from, Theileria spp. in Africa, the most similar taxa being Theileria spp. from waterbuck and mountain zebra. The degree of sequence variability observed at the 18S rDNA locus also suggests the likely existence of additional cryptic species. Among described species, the genome of this novel equid Theileria parasite is most similar to that of Theileria equi, also a pathogen of horses. The estimated divergence time between the new Theileria sp. and T. equi, based on genomic sequence data, is greater than 33 million years. Average protein sequence divergence between them, at 23%, is greater than that of Theileria parva and Theileria annulata proteins, which is 18%. The latter two represent highly virulent Theileria spp. of domestic cattle, as well as of African and Asian wild buffalo, respectively, which differ markedly in pathology, host cell tropism, tick vector and geographical distribution. The extent of genome-wide sequence divergence, as well as significant morphological differences, relative to T. equi justify the classification of Theileria sp. as a new taxon. Despite the overall genomic divergence, the nine member equi merozoite antigen (EMA) superfamily, previously found as a multigene family only in T. equi, is also present in the novel parasite. Practically, significant sequence divergence in antigenic loci resulted in this undescribed Theileria sp. not being detectable using currently available diagnostic tests. Discovery of this novel species infective to equids highlights exceptional diversity within the genus Theileria, a finding with serious implications for apicomplexan parasite surveillance.


Assuntos
Genômica , Doenças dos Cavalos/parasitologia , Theileria/genética , Theileriose/parasitologia , Animais , DNA de Protozoário/genética , Evolução Molecular , Feminino , Cavalos , Masculino , Filogenia , RNA Ribossômico 18S/genética , Theileria/isolamento & purificação , Theileria/patogenicidade , Virulência
17.
PLoS Negl Trop Dis ; 11(10): e0005965, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28985216

RESUMO

Babesia bovis, is a tick borne apicomplexan parasite responsible for important cattle losses globally. Babesia parasites have a complex life cycle including asexual replication in the mammalian host and sexual reproduction in the tick vector. Novel control strategies aimed at limiting transmission of the parasite are needed, but transmission blocking vaccine candidates remain undefined. Expression of HAP2 has been recognized as critical for the fertilization of parasites in the Babesia-related Plasmodium, and is a leading candidate for a transmission blocking vaccine against malaria. Hereby we identified the B. bovis hap2 gene and demonstrated that it is widely conserved and differentially transcribed during development within the tick midgut, but not by blood stage parasites. The hap2 gene was disrupted by transfecting B. bovis with a plasmid containing the flanking regions of the hap2 gene and the GPF-BSD gene under the control of the ef-1α-B promoter. Comparison of in vitro growth between a hap2-KO B. bovis clonal line and its parental wild type strain showed that HAP2 is not required for the development of B. bovis in erythrocytes. However, xanthurenic acid-in vitro induction experiments of sexual stages of parasites recovered after tick transmission resulted in surface expression of HAP2 exclusively in sexual stage induced parasites. In addition, hap2-KO parasites were not able to develop such sexual stages as defined both by morphology and by expression of the B. bovis sexual marker genes 6-Cys A and B. Together, the data strongly suggests that tick midgut stage differential expression of hap2 is associated with the development of B. bovis sexual forms. Overall these studies are consistent with a role of HAP2 in tick stages of the parasite and suggest that HAP2 is a potential candidate for a transmission blocking vaccine against bovine babesiosis.


Assuntos
Vetores Aracnídeos/parasitologia , Babesia bovis/genética , Babesia bovis/fisiologia , Genes de Protozoários , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Rhipicephalus/parasitologia , Animais , Babesia bovis/efeitos dos fármacos , Babesia bovis/crescimento & desenvolvimento , Bovinos/parasitologia , Eritrócitos/parasitologia , Feminino , Estágios do Ciclo de Vida , Fator 1 de Elongação de Peptídeos/genética , Regiões Promotoras Genéticas , Reprodução/efeitos dos fármacos , Reprodução/genética , Xanturenatos/farmacologia
18.
Parasit Vectors ; 10(1): 214, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28464956

RESUMO

BACKGROUND: Babesia bovis is an intra-erythrocytic tick-transmitted apicomplexan protozoan parasite. It has a complex lifestyle including asexual replication in the mammalian host and sexual replication occurring in the midgut of host tick vector, typically, Rhipicephalus microplus. Previous evidence showed that certain B. bovis genes, including members of 6-Cys gene family, are differentially expressed during tick and mammalian stages of the parasite's life cycle. Moreover, the 6-Cys E gene is differentially expressed in the T3Bo strain of B. bovis tick stages, and anti 6-Cys E antibodies were shown to be able to inhibit in vitro growth of the phenotypically distinct B. bovis Mo7clonal line. METHODS: In this study, the 6-Cys E gene of B. bovis T3Bo strain was disrupted by transfection using a plasmid containing 6-Cys gene E 5' and 3' regions to guide homologous recombination, and the egfp-bsd fusion gene under control of a ef-1α promoter, yielding a B. bovis clonal line designated 6-Cys EKO-cln. Full genome sequencing of 6-Cys EKO-cln parasites was performed and in vitro inhibition assays using anti 6-Cys E antibodies. RESULTS: Full genome sequencing of 6-Cys EKO-cln B. bovis demonstrated single insertion of egfp-bsd gene that disrupts the integrity of 6-Cys gene E. Undistinguishable growth rate of 6-Cys EKO-cln line compared to wild-type 6-Cys E intact T3Bo B. bovis strain in in vitro cultures indicates that expression of gene 6-Cys E is not essential for blood stage replication in this strain. In vitro inhibition assays confirmed the ability of anti-6 Cys E antibodies to inhibit the growth of the wild-type Mo7 and T3Bo B. bovis parasites, but no significant inhibition was found for 6-Cys EKO-cln line parasites. CONCLUSIONS: Overall, the data suggest that the anti-6 Cys E antibody neutralising effect on the wild type strains is likely due to mechanical hindrance, or cross-reactivity, rather than due to functional requirements of 6-Cys gene E product for survival and development of the erythrocyte stages. Further investigation is underway to determine if the 6-Cys E protein is required for replication and sexual stage development of B. bovis during tick stages.


Assuntos
Babesia bovis/genética , Genes de Protozoários , Transfecção , Animais , Babesia bovis/efeitos dos fármacos , Babesia bovis/crescimento & desenvolvimento , Babesiose/parasitologia , Bovinos , Doenças dos Bovinos/parasitologia , Técnicas de Inativação de Genes , Genótipo , Recombinação Homóloga , Estágios do Ciclo de Vida , Fenótipo , Regiões Promotoras Genéticas
19.
PLoS One ; 11(9): e0163791, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27668751

RESUMO

Babesia bovis, an intra-erythrocytic tick-borne apicomplexan protozoan, is one of the causative agents of bovine babesiosis. Its life cycle includes sexual reproduction within cattle fever ticks, Rhipicephalus spp. Six B. bovis 6-Cys gene superfamily members were previously identified (A, B, C, D, E, F) where their orthologues in Plasmodium parasite have been shown to encode for proteins required for the development of sexual stages. The current study identified four additional 6-Cys genes (G, H, I, J) in the B. bovis genome. These four genes are described in the context of the complete ten 6-Cys gene superfamily. The proteins expressed by this gene family are predicted to be secreted or surface membrane directed. Genetic analysis comparing the 6-Cys superfamily among five distinct B. bovis strains shows limited sequence variation. Additionally, A, B, E, H, I and J genes were transcribed in B. bovis infected tick midgut while genes A, B and E were also transcribed in the subsequent B. bovis kinete stage. Transcription of gene C was found exclusively in the kinete. In contrast, transcription of genes D, F and G in either B. bovis infected midguts or kinetes was not detected. None of the 6-Cys transcripts were detected in B. bovis blood stages. Subsequent protein analysis of 6-Cys A and B is concordant with their transcript profile. The collective data indicate as in Plasmodium parasite, certain B. bovis 6-Cys family members are uniquely expressed during sexual stages and therefore, they are likely required for parasite reproduction. Within B. bovis specifically, proteins encoded by 6-Cys genes A and B are markers for sexual stages and candidate antigens for developing novel vaccines able to interfere with the development of B. bovis within the tick vector.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...