Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ambio ; 51(9): 1978-1993, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35503201

RESUMO

Blue Carbon Ecosystems (BCEs) help mitigate and adapt to climate change but their integration into policy, such as Nationally Determined Contributions (NDCs), remains underdeveloped. Most BCE conservation requires community engagement, hence community-scale projects must be nested within the implementation of NDCs without compromising livelihoods or social justice. Thirty-three experts, drawn from academia, project development and policy, each developed ten key questions for consideration on how to achieve this. These questions were distilled into ten themes, ranked in order of importance, giving three broad categories of people, policy & finance, and science & technology. Critical considerations for success include the need for genuine participation by communities, inclusive project governance, integration of local work into national policies and practices, sustaining livelihoods and income (for example through the voluntary carbon market and/or national Payment for Ecosystem Services and other types of financial compensation schemes) and simplification of carbon accounting and verification methodologies to lower barriers to entry.


Assuntos
Carbono , Ecossistema , Sequestro de Carbono , Mudança Climática , Conservação dos Recursos Naturais/métodos , Humanos
2.
J Environ Manage ; 235: 463-479, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30710856

RESUMO

Carbon offset credits, and associated projects, are acclaimed to address economic, environmental and social issues simultaneously. However, critics argue that carbon offset mechanisms are ill equipped to assist developing countries in achieving sustainable development. Social standards now exist to provide robust methods for assessing the social and biodiversity performance of carbon offset projects and credible impact assessments to help ensure positive outcomes for local people and biodiversity. Following such a standard, and simultaneously applying the Sustainable Livelihoods Approach, we develop the Coastal Carbon Impacts Framework (CCIF) as a conceptual framework to document the potential positive and negative impacts of coastal carbon offset projects on local livelihoods. We apply the CCIF to four case studies and derive its main livelihood outcomes as well as describe potential long-term impacts. By using the capitals approach, the CCIF is able to dismantle the different impact areas into smaller entities. This allows a more detailed analysis on the positive and negative impacts a project has on communities - across the natural, financial, social, human, physical, cultural and political capital. While the case studies analysed show mainly positive outcomes, certainly no project is without risk of negatively impacting the community. The CCIF is however able to demonstrate potential social risk areas. If applied to additional coastal carbon offset projects, best practice documents, community engagement and the monitoring and evaluation process of such projects can be improved.


Assuntos
Carbono , Conservação dos Recursos Naturais , Biodiversidade , Países em Desenvolvimento , Humanos
3.
Environ Manage ; 52(4): 761-79, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23897413

RESUMO

Ocean acidification has emerged over the last two decades as one of the largest threats to marine organisms and ecosystems. However, most research efforts on ocean acidification have so far neglected management and related policy issues to focus instead on understanding its ecological and biogeochemical implications. This shortfall is addressed here with a systematic, international and critical review of management and policy options. In particular, we investigate the assumption that fighting acidification is mainly, but not only, about reducing CO2 emissions, and explore the leeway that this emerging problem may open in old environmental issues. We review nine types of management responses, initially grouped under four categories: preventing ocean acidification; strengthening ecosystem resilience; adapting human activities; and repairing damages. Connecting and comparing options leads to classifying them, in a qualitative way, according to their potential and feasibility. While reducing CO2 emissions is confirmed as the key action that must be taken against acidification, some of the other options appear to have the potential to buy time, e.g. by relieving the pressure of other stressors, and help marine life face unavoidable acidification. Although the existing legal basis to take action shows few gaps, policy challenges are significant: tackling them will mean succeeding in various areas of environmental management where we failed to a large extent so far.


Assuntos
Oceanos e Mares , Poluição da Água/legislação & jurisprudência , Animais , Dióxido de Carbono/química , Mudança Climática , Ecossistema , Humanos , Concentração de Íons de Hidrogênio , Poluição da Água/prevenção & controle
4.
PLoS One ; 7(9): e43542, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22962585

RESUMO

Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems--marshes, mangroves, and seagrasses--that may be lost with habitat destruction ('conversion'). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this 'blue carbon' can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15-1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3-19% of those from deforestation globally, and result in economic damages of $US 6-42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats.


Assuntos
Dióxido de Carbono/química , Pegada de Carbono/estatística & dados numéricos , Carbono/química , Ecossistema , Áreas Alagadas , Atmosfera , Ciclo do Carbono , Pegada de Carbono/economia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...