Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 66(2): 298-309, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12889000

RESUMO

Previous observations of reduced uniaxial elongation, fracture resistance, and crack propagation resistance of highly crosslinked ultrahigh molecular weight polyethylene (UHMWPE) have contributed to concern that the technology may not be appropriate for systems undergoing cyclic fatigue loading. Using a "total life" approach, we examined the influence of radiation crosslinking on the fatigue response of UHMWPE under cyclic loading via the small punch test. Our goal in this study was to evaluate the suitability of the small punch test for conducting miniature-specimen, cyclic loading, and fatigue experiments of conventional and highly crosslinked UHMWPE. We subjected four types of conventional and highly crosslinked UHMWPE to cyclic loading at 200 N/s and at body temperature in a small punch test apparatus. After failure, the fracture surfaces were characterized with the use of field emission scanning electron microscopy to evaluate the fatigue mechanisms. Cyclic small punch testing under load control was found to be an effective and repeatable method for relative assessment of the fatigue resistance of conventional and highly crosslinked UHMWPE specimens under multiaxial loading conditions. For each of the four conventional and highly crosslinked UHMWPE materials evaluated in this study, fatigue failures were consistently produced according to a power law relationship in the low cycle regimen, corresponding to failures below 10000 cycles. The fatigue failures were all found to be consistent with a single source of initiation and propagation to failure. Our long-term goal in this research is to develop miniature-specimen fatigue testing techniques for characterization of retrieved UHMWPE inserts.


Assuntos
Teste de Materiais , Polietilenos/química , Microscopia Eletrônica de Varredura , Estresse Mecânico
2.
Biomaterials ; 23(17): 3681-97, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12109694

RESUMO

Three series of uniaxial tension and compression tests were conducted on two conventional and two highly crosslinked ultra-high molecular weight polyethylenes (UHMWPEs) all prepared from the same lot of medical grade GUR 1050. The conventional materials were unirradiated (control) and gamma irradiated in nitrogen with a dose of 30 kGy. The highly crosslinked UHMWPEs were gamma irradiated at room temperature with 100 kGy and then thermally processed by either annealing below the melt transition at 100 degrees C or by remelting above the melt transition at 150 degrees C. The true stress-strain behavior of the four UHMWPE materials was characterized as a function of strain rate (between 0.02 and 0.10 s(-1)) and test temperature (20-60 degrees C). Although annealing and remelting of UHMWPE are primarily considered as methods of improving oxidation resistance, thermal processing was found to significantly impact the crystallinity, and hence the mechanical behavior, of the highly crosslinked UHMWPE. The crystallinity and radiation dose were key predictors of the uniaxial yielding, plastic flow, and failure properties of conventional and highly crosslinked UHMWPEs. The thermomechanical behavior of UHMWPE was accurately predicted using an Arrhenius model, and the associated activation energies for thermal softening were related to the crystallinity of the polymers. The conventional and highly crosslinked UHMWPEs exhibited low strain rate dependence in power law relationships, comparable to metals. In light of the unifying trends observed in the true stress-strain curves of the four materials investigated in this study, both crosslinking (governed by the gamma radiation dose) and crystallinity (governed by the thermal processing) were found to be useful predictors of the mechanical behavior of UHMWPE for a wide range of test temperatures and rates. The data collected in this study will be used to develop constitutive models based on the physics of polymer systems for predicting the thermomechanical behavior of conventional and crosslinked UHMWPE used in total joint replacements.


Assuntos
Materiais Biocompatíveis/química , Prótese Articular , Polietilenos/química , Materiais Biocompatíveis/efeitos da radiação , Fenômenos Biomecânicos , Reagentes de Ligações Cruzadas , Raios gama , Humanos , Técnicas In Vitro , Teste de Materiais/instrumentação , Polietilenos/efeitos da radiação , Temperatura , Termodinâmica
3.
J Biomed Mater Res ; 61(2): 312-22, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12007212

RESUMO

The resin and processing route have been identified as potential variables influencing the mechanical behavior, and hence the clinical performance, of ultra-high molecular weight polyethylene (UHMWPE) orthopedic components. Researchers have reported that components fabricated from 1900 resin may oxidize to a lesser extent than components fabricated from GUR resin during shelf aging after gamma sterilization in air. Conflicting reports on the oxidation resistance for 1900 raise the question of whether resin or manufacturing method, or an interaction between resin and manufacturing method, influences the mechanical behavior of UHMWPE. We conducted a series of accelerated aging studies (no aging, aging in oxygen or in nitrogen) to systematically examine the influence of resin (GUR or 1900), manufacturing method (bulk compression molding or extrusion), and sterilization method (none, in air, or in nitrogen) on the mechanical behavior of UHMWPE. The small punch testing technique was used to evaluate the mechanical behavior of the materials, and Fourier transform infrared spectroscopy was used to characterize the oxidation in selected samples. Our study showed that the sterilization environment, aging condition, and specimen location (surface or subsurface) significantly affected the mechanical behavior of UHMWPE. Each of the three polyethylenes evaluated seem to degrade according to a similar pathway after artificial aging in oxygen and gamma irradiation in air. The initial ability of the materials to exhibit post-yield strain hardening was significantly compromised by degradation. In general, there were only minor differences in the aging behavior of molded and extruded GUR 1050, whereas the molded 1900 material seemed to degrade slightly faster than either of the 1050 materials.


Assuntos
Materiais Biocompatíveis/normas , Teste de Materiais , Polietilenos/normas , Materiais Biocompatíveis/efeitos da radiação , Análise de Falha de Equipamento , Raios gama , Mecânica , Nitrogênio/farmacologia , Oxigênio/farmacologia , Polietilenos/efeitos da radiação , Resinas Sintéticas/farmacologia , Esterilização/métodos , Fatores de Tempo
4.
J Biomed Mater Res ; 61(2): 323-9, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12007213

RESUMO

In Part I of this series, we showed that aging at elevated oxygen pressure is more successful at increasing the depth to which degradation occurs although it, too, generally causes greater degradation at the surface than at the subsurface. Therefore we hypothesized that thermal degradation alone, in the absence of free radicals, could be sufficient to artificially age UHMWPE in a manner analogous to natural aging. In the present study, virgin and air-irradiated UHMWPE (extruded GUR 1050 and compression-molded 1900) were aged up to 4 weeks at elevated oxygen pressure, and the mechanical behavior at the surface and subsurface was examined. All the materials were substantially degraded following 4 weeks of aging, but the spatial variations in the nonirradiated materials more closely mimicked the previously observed subsurface peak of degradation seen in naturally aged UHMWPE following irradiation in air. This aged material could provide a more realistic model for subsurface mechanical degradation, making it suitable for further mechanical testing in venues such as wear simulation.


Assuntos
Materiais Biocompatíveis/normas , Teste de Materiais , Polietilenos/normas , Análise de Falha de Equipamento , Raios gama , Temperatura Alta , Mecânica , Oxigênio/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...