Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 35(5): e21563, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33818810

RESUMO

One of the endogenous estrogens, 17ß-estradiol (E2 ) is a female steroid hormone secreted from the ovary. It is well established that E2 causes biochemical and histological changes in the uterus. However, it is not completely understood how E2 regulates the oviductal environment in vivo. In this study, we assessed the effect of E2 on each oviductal cell type, using an ovariectomized-hormone-replacement mouse model, single-cell RNA-sequencing (scRNA-seq), in situ hybridization, and cell-type-specific deletion in mice. We found that each cell type in the oviduct responded to E2 distinctively, especially ciliated and secretory epithelial cells. The treatment of exogenous E2 did not drastically alter the transcriptomic profile from that of endogenous E2 produced during estrus. Moreover, we have identified and validated genes of interest in our datasets that may be used as cell- and region-specific markers in the oviduct. Insulin-like growth factor 1 (Igf1) was characterized as an E2 -target gene in the mouse oviduct and was also expressed in human fallopian tubes. Deletion of Igf1 in progesterone receptor (Pgr)-expressing cells resulted in female subfertility, partially due to an embryo developmental defect and embryo retention within the oviduct. In summary, we have shown that oviductal cell types, including epithelial, stromal, and muscle cells, are differentially regulated by E2 and support gene expression changes, such as growth factors that are required for normal embryo development and transport in mouse models. Furthermore, we have identified cell-specific and region-specific gene markers for targeted studies and functional analysis in vivo.


Assuntos
Biomarcadores/metabolismo , Estradiol/farmacologia , Tubas Uterinas/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/fisiologia , Oviductos/fisiologia , Análise de Célula Única/métodos , Animais , Estrogênios/farmacologia , Tubas Uterinas/citologia , Tubas Uterinas/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oviductos/citologia , Oviductos/efeitos dos fármacos , Receptores de Progesterona/fisiologia
2.
Elife ; 92020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32990218

RESUMO

Scars are a serious health concern for burn victims and individuals with skin conditions associated with wound healing. Here, we identify regenerative factors in neonatal murine skin that transforms adult skin to regenerate instead of only repairing wounds with a scar, without perturbing development and homeostasis. Using scRNA-seq to probe unsorted cells from regenerating, scarring, homeostatic, and developing skin, we identified neonatal papillary fibroblasts that form a transient regenerative cell type that promotes healthy skin regeneration in young skin. These fibroblasts are defined by the expression of a canonical Wnt transcription factor Lef1 and using gain- and loss of function genetic mouse models, we demonstrate that Lef1 expression in fibroblasts primes the adult skin macroenvironment to enhance skin repair, including regeneration of hair follicles with arrector pili muscles in healed wounds. Finally, we share our genomic data in an interactive, searchable companion website (https://skinregeneration.org/). Together, these data and resources provide a platform to leverage the regenerative abilities of neonatal skin to develop clinically tractable solutions that promote the regeneration of adult tissue.


Assuntos
Fibroblastos/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Pele/metabolismo , Cicatrização/fisiologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pele/citologia
3.
Biol Reprod ; 103(2): 400-410, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32303757

RESUMO

Inhibition of the sperm transport process in the female reproductive tract could lead to infertility. We previously showed that a pan-serine protease inhibitor, 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), blocked semen liquefaction in vivo and resulted in a drastic decrease in the number of sperm in the oviduct of female mice. In this study, we used a mouse model to test the efficacy of AEBSF as a reversible contraceptive, a sperm motility inhibitor, and a spermicide. Additionally, this study evaluated the toxicity of AEBSF on mouse vaginal tissues in vivo and human endocervical cells in vitro. We found that female mice treated with AEBSF had significantly less pups born per litter as well as fertilization rates in vivo compared to the vehicle control. We then showed that AEBSF reduced sperm motility and fertilization capability in vitro in a dose-dependent manner. Furthermore, AEBSF also exhibited spermicidal effects. Lastly, AEBSF treatment in female mice for 10 min or 3 consecutive days did not alter vaginal cell viability in vivo, similar to that of the vehicle and non-treated controls. However, AEBSF decreased cell viability of human ectocervical (ECT) cell line in vitro, suggesting that cells in the lower reproductive tract in mice and humans responded differently to AEBSF. In summary, our study showed that AEBSF can be used as a prototype compound for the further development of novel non-hormonal contraceptives for women by targeting sperm transport in the female reproductive tract.


Assuntos
Fertilidade/efeitos dos fármacos , Fertilização/efeitos dos fármacos , Infertilidade Feminina/fisiopatologia , Inibidores de Serina Proteinase/farmacologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Sulfonas/farmacologia , Animais , Linhagem Celular , Colo do Útero/efeitos dos fármacos , Feminino , Humanos , Tamanho da Ninhada de Vivíparos , Masculino , Camundongos , Espermicidas , Espermatozoides/efeitos dos fármacos , Vagina/efeitos dos fármacos
4.
Endocrinology ; 161(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31883000

RESUMO

Estrogen receptor α (ESR1; encoded by Esr1) is a crucial nuclear transcription factor for female reproduction and is expressed throughout the female reproductive tract. To assess the function of ESR1 in reproductive tissues without confounding effects from a potential developmental defect arising from global deletion of ESR1, we generated a mouse model in which Esr1 was specifically ablated during postnatal development. To accomplish this, a progesterone receptor Cre line (PgrCre) was bred with Esr1f/f mice to create conditional knockout of Esr1 in reproductive tissues (called PgrCreEsr1KO mice) beginning around 6 days after birth. In the PgrCreEsr1KO oviduct, ESR1 was most efficiently ablated in the isthmic region. We found that at 3.5 days post coitus (dpc), embryos were retrieved from the uterus in control littermates while all embryos were retained in the PgrCreEsr1KO oviduct. Additionally, serum progesterone (P4) levels were significantly lower in PgrCreEsr1KO compared to controls at 3.5 dpc. This finding suggests that expression of ESR1 in the isthmus and normal P4 levels allow for successful embryo transport from the oviduct to the uterus. Therefore, alterations in oviductal isthmus ESR1 signaling and circulating P4 levels could be related to female infertility conditions such as tubal pregnancy.


Assuntos
Desenvolvimento Embrionário , Receptor alfa de Estrogênio/fisiologia , Tubas Uterinas/fisiologia , Útero/metabolismo , Animais , Estradiol/sangue , Feminino , Fertilidade , Hormônio Luteinizante/sangue , Masculino , Camundongos , Camundongos Knockout , Hipófise/metabolismo , Gravidez , Gravidez Tubária/metabolismo , Progesterona/sangue
5.
Sci Rep ; 8(1): 11247, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050124

RESUMO

In the female reproductive tract, the innate immune system is modulated by two sex steroid hormones, estrogen and progesterone. A cyclical wave of neutrophils in the vaginal lumen is triggered by chemokines and correlates with circulating estrogen levels. Classical estrogen signaling in the female reproductive tract is activated through estrogen receptor α (encoded by the Esr1 gene). To study the role of estrogen action in the vagina, we used a mouse model in which Esr1 was conditionally ablated from the epithelial cells (Wnt7acre/+; Esr1f/f). Histological evidence showed that in response to a physical stress, the lack of ESR1 caused the vaginal epithelium to deteriorate due to the absence of a protective cornified layer and a reduction in keratin production. In the absence of ESR1 in the vaginal epithelial tissue, we also observed an excess of neutrophil infiltration, regardless of the estrous cycle stage. The histological presence of neutrophils was found to correlate with persistent enzymatic activity in the cervical-vaginal fluid. Together, these findings suggest that ESR1 activity in the vaginal epithelial cells is required to maintain proper structural integrity of the vagina and immune response, both of which are necessary for protecting the vagina against physical damage and resetting the vaginal environment.


Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Infiltração de Neutrófilos , Vagina/imunologia , Animais , Feminino , Técnicas de Silenciamento de Genes , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...