Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 17(13): 3758-65, 1998 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-9649445

RESUMO

Expression of the bacteriophage lambda two-codon, AUG AUA, barI minigene (bar+) leads to the arrest of protein synthesis in cells defective in peptidyl-tRNA hydrolase (Pth). It has been hypothesized that translation of the bar+ transcript provokes premature release and accumulation of peptidyl-tRNA (p-tRNA). Inhibition of protein synthesis would then result from either starvation of sequestered tRNA or from toxicity of accumulated p-tRNA. To test this hypothesis and to investigate the cause of arrest, we used a coupled in vitro transcription-translation system primed with DNA containing bar+ and the beta-lactamase-encoding gene of the vector as a reporter. The results show that expression of bar+ minigene severely inhibits beta-lactamase polypeptide synthesis by Pth-defective extracts and partially inhibits synthesis by wild-type extracts. Fractions enriched for Pth, or a homogeneous preparation of Pth, prevented and reversed bar+-mediated inhibition. A mutant minigene, barA702, which changes the second codon AUA (Ile) to AAA (Lys), was also toxic for Pth-defective cells. Expression of barA702 inhibited in vitro polypeptide synthesis by Pth-defective extracts and, as with bar+, exogenous Pth prevented inhibition. Addition of pure tRNALys prevented inhibition by barA702 but not by bar+. Expression of bar+ and barA702 led to release and accumulation of p-tRNAIle and p-tRNALys respectively but bar+ also induced accumulation of p-tRNALys. Finally, bar+ stimulated association of methionine with ribosomes probably as fMet-tRNAfMet and the accumulation of methionine and isoleucine in solution as peptidyl-tRNA (p-tRNA). These results indicate that minigene-mediated inhibition of protein synthesis involves premature release of p-tRNA, misincorporation of amino acyl-tRNA, accumulation of p-tRNAs and possibly sequestration of tRNAs.


Assuntos
Bacteriófago lambda/genética , Genes Virais , Biossíntese de Proteínas , Aminoacil-RNA de Transferência/biossíntese , RNA de Transferência de Isoleucina/biossíntese , RNA de Transferência de Lisina/biossíntese , Hidrolases de Éster Carboxílico/metabolismo , Sistema Livre de Células , Regulação Viral da Expressão Gênica , RNA de Transferência/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA