Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 366(14)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31397847

RESUMO

We present experimental data that complement and validate some biochemical features at the genome level in the UVC-resistant Antarctic bacterium Hymenobacter sp. UV11 strain. The genome was sequenced, assembled and annotated. It has 6 096 246 bp, a GC content of 60.6% and 5155 predicted genes. The secretome analysis, by combining in silico predictions with shotgun proteomics data, showed that UV11 strain produces extracellular proteases and carbohydrases with potential biotechnological uses. We observed the formation of outer membrane vesicles, mesosomes and carbon-storage compounds by using transmission electron microscopy. The in silico analysis of the genome revealed the presence of genes involved in the metabolism of glycogen-like molecules and starch. By HPLC-UV-Vis analysis and 1H-NMR spectra, we verified that strain UV11 produces xanthophyll-like carotenoids such as 2'-hydroxyflexixanthin, and the in silico analysis showed that this bacterium has genes involved in the biosynthesis of cathaxanthin, zeaxanthin and astaxanthin. We also found genes involved in the repair of UV-damaged DNA such as a photolyase, the nucleotide excision repair system and the production of ATP-dependent proteases that are important cellular components involved in the endurance to physiological stresses. This information will help us to better understand the ecological role played by Hymenobacter strains in the extreme Antarctic environment.


Assuntos
Cytophagaceae/genética , Cytophagaceae/metabolismo , Genoma Bacteriano , Genômica , Regiões Antárticas , Cromatografia Líquida de Alta Pressão , Biologia Computacional/métodos , Cytophagaceae/classificação , Cytophagaceae/isolamento & purificação , Genômica/métodos , Redes e Vias Metabólicas , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo , Tolerância a Radiação
2.
Microbiol Res ; 223-225: 13-21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178046

RESUMO

Flavobacterium sp. AUG42 is a cellulase-producing bacterium isolated from the Antarctic oligochaete Grania sp. (Annelida). In this work, we report that AUG42 produces a glycoside hydrolase cocktail with CMCase, PASCase and cellobiase activities (optimum pHs and temperatures ranging from 5.5 to 6.5 and 40 to 50 °C, respectively). The time-course analyses of the bacterial growth and cellulase production showed that the cocktail has maximal activity at the stationary phase when growing at 16 °C with filter paper as a cellulosic carbon source, among the tested substrates. The analyses of the CAZome and the identification of secreted proteins by shotgun Mass Spectrometry analysis showed that five glycoside hydrolyses are present in the bacterial secretome, which probably cooperate in the degradation of the cellulosic substrates. Two of these glycoside hydrolyses may harbor putative carbohydrate binding modules, both with a cleft-like active site. The cellulolytic cocktail was assayed in saccharification experiments using carboxymethylcellulose as a substrate and results showed the release of glucose (a fermentable sugar) and other reducing-sugars, after 24 h incubation. The ecological relevance of producing cellulases in the Antarctic environment, as well as their potential use in the bio-refinery industry, are discussed.


Assuntos
Celulases/biossíntese , Celulases/química , Flavobacterium/enzimologia , Flavobacterium/metabolismo , Regiões Antárticas , Sequência de Bases , Carbono/metabolismo , Ciclo do Carbono , Carboximetilcelulose Sódica/metabolismo , Domínio Catalítico , Celulase , Celulases/genética , Celulose , Ensaios Enzimáticos , Fermentação , Flavobacterium/genética , Flavobacterium/crescimento & desenvolvimento , Glucose/metabolismo , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Especificidade por Substrato , Temperatura , beta-Glucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...