Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 14: 921573, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847683

RESUMO

Alzheimer's disease (AD), a neurodegenerative disorder that can occur in middle or old age, is characterized by memory loss, a continuous decline in thinking, behavioral and social skills that affect the ability of an individual to function independently. It is divided into sporadic and familial subtypes. Early-onset familial AD (FAD) is linked to mutations in genes coding for the amyloid-ß protein precursor (AßPP), presenilin 1 (PS1), and presenilin 2 (PS2), which lead to alterations in AßPP processing, generation of the Amyloid-ß peptide and hyperphosphorylation of tau protein. Identification of early biomarkers for AD diagnosis represents a challenge, and it has been suggested that molecular changes in neurodegenerative pathways identified in the brain of AD patients can be detected in peripheral non-neural cells derived from familial or sporadic AD patients. In the present study, we determined the protein expression, the proteomic and in silico characterization of skin fibroblasts from FAD patients with PS1 mutations (M146L or A246E) or from healthy individuals. Our results shown that fibroblasts from AD patients had increased expression of the autophagy markers LC3II, LAMP2 and Cathepsin D, a significant increase in total GSK3, phosphorylated ERK1/2 (Thr202/Tyr204) and phosphorylated tau (Thr231, Ser396, and Ser404), but no difference in the phosphorylation of Akt (Ser473) or the α (Ser21) and ß (Ser9) GSK3 isoforms, highlighting the relevant role of abnormal protein post-translational modifications in age-related neurodegenerative diseases, such as AD. Both 2-DE gels and mass spectrometry showed significant differences in the expression of the signaling pathways associated with protein folding and the autophagic pathway mediated by chaperones with the expression of HSPA5, HSPE1, HSPD1, HSP90AA1, and HSPE1 and reticular stress in the FAD samples. Furthermore, expression of the heat shock proteins HSP90 and HSP70 was significantly higher in the cells from AD patients as confirmed by Western blot. Taken together our results indicate that fibroblasts from patients with FAD-PS1 present alterations in signaling pathways related to cellular stress, autophagy, lysosomes, and tau phosphorylation. Fibroblasts can therefore be useful in modeling pathways related to neurodegeneration, as well as for the identification of early AD biomarkers.

2.
Pathogens ; 9(6)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531943

RESUMO

The intranasal administration of Naegleria fowleri lysates plus cholera toxin (CT) increases protection against N. fowleri meningoencephalitis in mice, suggesting that humoral immune response mediated by antibodies is crucial to induce protection against the infection. In the present study, we applied a protein analysis to detect and identify immunogenic antigens from N. fowleri, which might be responsible for such protection. A Western blot assay of N. fowleri polypeptides was performed using the serum and nasal washes from mice immunized with N. fowleri lysates, either alone or with CT after one, two, three, or four weekly immunizations and challenged with trophozoites of N. fowleri. Immunized mice with N. fowleri plus CT, after four doses, had the highest survival rate (100%). Nasal or sera IgA and IgG antibody response was progressively stronger as the number of immunizations was increased, and that response was mainly directed to 250, 100, 70, 50, 37, and 19 kDa polypeptide bands, especially in the third and fourth immunization. Peptides present in these immunogenic bands were matched by nano-LC-ESI-MSMS with different proteins, which could serve as candidates for a vaccine against N. fowleri infection.

3.
Parasite Immunol ; 42(6): e12715, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32191816

RESUMO

Many pathogenicity factors are involved in the development of primary amoebic meningoencephalitis (PAM) caused by N fowleri. However, most of them are not exclusive for N fowleri and they have not even been described in other nonpathogenic Naegleria species. Therefore, the objective of this work was to identify differential proteins and protein pattern recognition between Naegleria fowleri and Naegleria lovaniensis using antibodies anti-N fowleri as strategy to find vaccine candidates against meningoencephalitis. Electrophoresis and Western blots conventional and 2-DE were performed for the identification of antigenic proteins, and these were analysed by the mass spectrometry technique. The results obtained in 2-DE gels and Western blot showed very notable differences in spot intensity between these two species, specifically those with relative molecular weight of 100, 75, 50 and 19 kDa. Some spots corresponding to these molecular weights were identified as actin fragment, myosin II, heat shock protein, membrane protein Mp2CL5 among others, with differences in theoretical post-translational modifications. In this work, we found differences in antigenic proteins between both species, proteins that could be used for a further development of vaccines against N fowleri infection.


Assuntos
Antígenos de Protozoários/imunologia , Infecções Protozoárias do Sistema Nervoso Central/imunologia , Meningoencefalite/imunologia , Naegleria fowleri/imunologia , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Proteínas de Membrana/imunologia , Meningoencefalite/parasitologia
4.
PLoS One ; 13(11): e0206470, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30427898

RESUMO

Barley malting quality depends on seed characteristics achieved during grain development and germination. One important parameter is protein accumulation in the mature seed, which may vary between cultivars. Here we conducted a protein pattern analysis in the range of pI 4-7 of mature grains from five Mexican barley cultivars, commonly used for malt and beer production. Reproducibly distinct protein spots, separated by 2D SDS PAGE, were identified by mass spectrometry and considered as potential markers for cultivars with distinct seed protein accumulation. The expression patterns of glutamate decarboxylase (GAD) and protein disulfide isomerase (PDI1-1) were followed at transcript level during grain development for three independent growth cycles to establish whether differences between cultivars were reproducible. Quantitative determination of PDI1-1 protein levels by ELISA confirmed a reproducibly, distinctive accumulation and post-translational modifications between cultivars, which were independent of plant growth regimes. According to its impact on differential storage protein accumulation, we propose the PDI1-1 protein as potential biomarker for Mexican malting barley cultivars.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum/enzimologia , Hordeum/genética , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Glicosilação , Hordeum/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/crescimento & desenvolvimento
5.
Mol Cell Biol ; 25(20): 8985-99, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16199876

RESUMO

We show that histone-DNA interactions are disrupted across entire yeast heat shock genes upon their transcriptional activation. At HSP82, nucleosomal disassembly spans a domain of approximately 3 kb, beginning upstream of the promoter and extending through the transcribed region. A kinetic analysis reveals that histone H4 loses contact with DNA within 45 s of thermal upshift. Nucleosomal reassembly, prompted by temperature downshift, is also rapid, detectable within 60 s. Prior to their eviction, promoter-associated histones are transiently hyperacetylated, while those in the coding region are not. An upstream activation sequence mutation that weakens the binding of heat shock factor obviates domain-wide remodeling, while deletion of the TATA box that nearly abolishes transcription is permissive to 5'-end remodeling. The Swi/Snf complex is rapidly recruited to HSP82 upon heat shock. Nonetheless, domain-wide remodeling occurs efficiently in Swi/Snf mutants despite a sixfold reduction in transcription; it is also seen in gcn5Delta, set1Delta, and paf1Delta mutants. Contrary to current models, we demonstrate that a high density of RNA polymerase (Pol) is insufficient to elicit histone displacement. This finding suggests that histone eviction is modulated by factors that are not linked to elongating Pol II. It further suggests that histone depletion plays a causal role in mediating vigorous transcription in vivo and is not merely a consequence of it.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Histonas/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Regiões 3' não Traduzidas , Acetilação , Sequência de Bases , Montagem e Desmontagem da Cromatina , DNA Fúngico/genética , DNA Fúngico/metabolismo , Genes Fúngicos , Proteínas de Choque Térmico HSP90/genética , Resposta ao Choque Térmico , Cinética , Nucleossomos/metabolismo , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...