Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512312

RESUMO

A total of 14 973 alleles in 29 661 sequenced samples collected between March 2021 and January 2023 by the Mexican Consortium for Genomic Surveillance (CoViGen-Mex) and collaborators were used to construct a thorough map of mutations of the Mexican SARS-CoV-2 genomic landscape containing Intra-Patient Minor Allelic Variants (IPMAVs), which are low-frequency alleles not ordinarily present in a genomic consensus sequence. This additional information proved critical in identifying putative coinfecting variants included alongside the most common variants, B.1.1.222, B.1.1.519, and variants of concern (VOCs) Alpha, Gamma, Delta, and Omicron. A total of 379 coinfection events were recorded in the dataset (a rate of 1.28 %), resulting in the first such catalogue in Mexico. The most common putative coinfections occurred during the spread of Delta or after the introduction of Omicron BA.2 and its descendants. Coinfections occurred constantly during periods of variant turnover when more than one variant shared the same niche and high infection rate was observed, which was dependent on the local variants and time. Coinfections might occur at a higher frequency than customarily reported, but they are often ignored as only the consensus sequence is reported for lineage identification.


Assuntos
COVID-19 , Coinfecção , Humanos , México/epidemiologia , Coinfecção/epidemiologia , Alelos , SARS-CoV-2/genética , COVID-19/epidemiologia
2.
Microbiol Spectr ; 12(4): e0316523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441469

RESUMO

Trichoderma species are known for their mycoparasitic activity against phytopathogenic fungi that cause significant economic losses in agriculture. During mycoparasitism, Trichoderma spp. recognize molecules produced by the host fungus and release secondary metabolites and hydrolytic enzymes to kill and degrade the host's cell wall. Here, we explored the participation of the Trichoderma atroviride RNAi machinery in the interaction with six phytopathogenic fungi of economic importance. We determined that both Argonaute-3 and Dicer-2 play an essential role during mycoparasitism. Using an RNA-Seq approach, we identified that perception, detox, and cell wall degradation depend on the T. atroviride-RNAi when interacting with Alternaria alternata, Rhizoctonia solani AG2, and R. solani AG5. Furthermore, we constructed a gene co-expression network that provides evidence of two gene modules regulated by RNAi, which play crucial roles in essential processes during mycoparasitism. In addition, based on small RNA-seq, we conclude that siRNAs regulate amino acid and carbon metabolism and communication during the Trichoderma-host interaction. Interestingly, our data suggest that siRNAs might regulate allorecognition (het) and transport genes in a cross-species manner. Thus, these results reveal a fine-tuned regulation in T. atroviride dependent on siRNAs that is essential during the biocontrol of phytopathogenic fungi, showing a greater complexity of this process than previously established.IMPORTANCEThere is an increasing need for plant disease control without chemical pesticides to avoid environmental pollution and resistance, and the health risks associated with the application of pesticides are increasing. Employing Trichoderma species in agriculture to control fungal diseases is an alternative plant protection strategy that overcomes these issues without utilizing chemical fungicides. Therefore, understanding the biocontrol mechanisms used by Trichoderma species to antagonize other fungi is critical. Although there has been extensive research about the mechanisms involved in the mycoparasitic capability of Trichoderma species, there are still unsolved questions related to how Trichoderma regulates recognition, attack, and defense mechanisms during interaction with a fungal host. In this work, we report that the Argonaute and Dicer components of the RNAi machinery and the small RNAs they process are essential for gene regulation during mycoparasitism by Trichoderma atroviride.


Assuntos
Hypocreales , Praguicidas , Plantas , Comunicação , Regulação Fúngica da Expressão Gênica
3.
Sci Rep ; 14(1): 2466, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291044

RESUMO

Fungi of the Trichoderma genus are called "biostimulants" because they promote plant growth and development and induce disease resistance. We used conventional transcriptome and gene co-expression analyses to understand the molecular response of the plant Arabidopsis thaliana to inoculation with Trichoderma atroviride or Trichoderma virens. The transcriptional landscape of the plant during the interaction with these fungi showed a reduction in functions such as reactive oxygen species production, defense mechanisms against pathogens, and hormone signaling. T. virens, as opposed to T. atroviride, was more effective at downregulating genes related to terpenoid metabolism, root development, and chemical homeostasis. Through gene co-expression analysis, we found functional gene modules that closely link plant defense with hypoxia. Notably, we found a transcription factor (locus AT2G47520) with two functional domains of interest: a DNA-binding domain and an N-terminal cysteine needed for protein stability under hypoxia. We hypothesize that the transcription factor can bind to the promoter sequence of the GCC-box that is connected to pathogenesis by positioned weight matrix analysis.


Assuntos
Arabidopsis , Trichoderma , Arabidopsis/metabolismo , Trichoderma/genética , Resistência à Doença , Fatores de Transcrição/metabolismo , Hipóxia/metabolismo , Raízes de Plantas/metabolismo
4.
Microb Genom ; 9(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38112714

RESUMO

In Mexico, the BA.4 and BA.5 Omicron variants dominated the fifth epidemic wave (summer 2022), superseding BA.2, which had circulated during the inter-wave period. The present study uses genome sequencing and statistical and phylogenetic analyses to examine these variants' abundance, distribution, and genetic diversity in Mexico from April to August 2022. Over 35 % of the sequenced genomes in this period corresponded to the BA.2 variant, 8 % to the BA.4 and 56 % to the BA.5 variant. Multiple subvariants were identified, but the most abundant, BA.2.9, BA.2.12.1, BA.5.1, BA.5.2, BA.5.2.1 and BA.4.1, circulated across the entire country, not forming geographical clusters. Contrastingly, other subvariants exhibited a geographically restricted distribution, most notably in the Southeast region, which showed a distinct subvariant dynamic. This study supports previous results showing that this region may be a significant entry point and contributed to introducing and evolving novel variants in Mexico. Furthermore, a differential distribution was observed for certain subvariants among specific States through time, which may have contributed to the overall increased diversity observed during this wave compared to the previous ones. This study highlights the importance of sustaining genomic surveillance to identify novel variants that may impact public health.


Assuntos
COVID-19 , Humanos , México/epidemiologia , COVID-19/epidemiologia , Filogenia , SARS-CoV-2/genética
5.
Microbiol Spectr ; 11(6): e0260723, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37943049

RESUMO

IMPORTANCE: In addition to being considered a biocontrol agent, the fungus Trichoderma atroviride is a relevant model for studying mechanisms of response to injury conserved in plants and animals that opens a new landscape in relation to regeneration and cell differentiation mechanisms. Here, we reveal the co-functionality of a lipoxygenase and a patatin-like phospholipase co-expressed in response to wounding in fungi. This pair of enzymes produces oxidized lipids that can function as signaling molecules or oxidative stress signals that, in ascomycetes, induce asexual development. Furthermore, we determined that both genes participate in the regulation of the synthesis of 13-HODE and the establishment of the physiological responses necessary for the formation of reproductive aerial mycelium ultimately leading to asexual development. Our results suggest an injury-induced pathway to produce oxylipins and uncovered physiological mechanisms regulated by LOX1 and PLP1 to induce conidiation, opening new hypotheses for the novo regeneration mechanisms of filamentous fungi.


Assuntos
Trichoderma , Animais , Trichoderma/genética , Transdução de Sinais , Micélio , Reprodução , Estresse Oxidativo , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos/metabolismo
6.
Elife ; 122023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37498057

RESUMO

Over 200 different SARS-CoV-2 lineages have been observed in Mexico by November 2021. To investigate lineage replacement dynamics, we applied a phylodynamic approach and explored the evolutionary trajectories of five dominant lineages that circulated during the first year of local transmission. For most lineages, peaks in sampling frequencies coincided with different epidemiological waves of infection in Mexico. Lineages B.1.1.222 and B.1.1.519 exhibited similar dynamics, constituting clades that likely originated in Mexico and persisted for >12 months. Lineages B.1.1.7, P.1 and B.1.617.2 also displayed similar dynamics, characterized by multiple introduction events leading to a few successful extended local transmission chains that persisted for several months. For the largest B.1.617.2 clades, we further explored viral lineage movements across Mexico. Many clades were located within the south region of the country, suggesting that this area played a key role in the spread of SARS-CoV-2 in Mexico.


Assuntos
COVID-19 , Humanos , México/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2/genética , Evolução Biológica , Filogenia
7.
Fungal Biol ; 127(7-8): 1157-1179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495306

RESUMO

For the first time, the International Symposium on Fungal Stress was joined by the XIII International Fungal Biology Conference. The International Symposium on Fungal Stress (ISFUS), always held in Brazil, is now in its fourth edition, as an event of recognized quality in the international community of mycological research. The event held in São José dos Campos, SP, Brazil, in September 2022, featured 33 renowned speakers from 12 countries, including: Austria, Brazil, France, Germany, Ghana, Hungary, México, Pakistan, Spain, Slovenia, USA, and UK. In addition to the scientific contribution of the event in bringing together national and international researchers and their work in a strategic area, it helps maintain and strengthen international cooperation for scientific development in Brazil.


Assuntos
Biologia , Brasil , França , Espanha , México
9.
Front Immunol ; 14: 1175786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256140

RESUMO

Background: The plant immune response to DNA is highly self/nonself-specific. Self-DNA triggered stronger responses by early immune signals such as H2O2 formation than nonself-DNA from closely related plant species. Plants lack known DNA receptors. Therefore, we aimed to investigate whether a differential sensing of self-versus nonself DNA fragments as damage- versus pathogen-associated molecular patterns (DAMPs/PAMPs) or an activation of the DNA-damage response (DDR) represents the more promising framework to understand this phenomenon. Results: We treated Arabidopsis thaliana Col-0 plants with sonicated self-DNA from other individuals of the same ecotype, nonself-DNA from another A. thaliana ecotype, or nonself-DNA from broccoli. We observed a highly self/nonself-DNA-specific induction of H2O2 formation and of jasmonic acid (JA, the hormone controlling the wound response to chewing herbivores) and salicylic acid (SA, the hormone controlling systemic acquired resistance, SAR, to biotrophic pathogens). Mutant lines lacking Ataxia Telangiectasia Mutated (ATM) or ATM AND RAD3-RELATED (ATR) - the two DDR master kinases - retained the differential induction of JA in response to DNA treatments but completely failed to induce H2O2 or SA. Moreover, we observed H2O2 formation in response to in situ-damaged self-DNA from plants that had been treated with bleomycin or SA or infected with virulent bacteria Pseudomonas syringae pv. tomato DC3000 or pv. glycinea carrying effector avrRpt2, but not to DNA from H2O2-treated plants or challenged with non-virulent P. syringae pv. glycinea lacking avrRpt2. Conclusion: We conclude that both ATM and ATR are required for the complete activation of the plant immune response to extracellular DNA whereas an as-yet unknown mechanism allows for the self/nonself-differential activation of the JA-dependent wound response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ataxia Telangiectasia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , DNA , Dano ao DNA , Hormônios , Peróxido de Hidrogênio
10.
Infection ; 51(5): 1549-1555, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37058241

RESUMO

PURPOSE: The swift expansion of the BW.1 SARS-CoV-2 variant coincided with a rapid increase of COVID-19 cases occurring in Southeast Mexico in October, 2022, which marked the start of Mexico's sixth epidemiological wave. In Yucatan, up to 92% (58 of 73) of weekly sequenced genomes between epidemiological week 42 and 47 were identified as either BW.1 or its descendant, BW.1.1 in the region, during the last trimester of 2022. In the current study, a comprehensive genomic comparison was carried out to characterize the evolutionary history of the BW lineage, identifying its origins and its most important mutations. METHODS: An alignment of all the genomes of the BW lineage and its parental BA.5.6.2 variant was carried out to identify their mutations. A phylogenetic and ancestral sequence reconstruction analysis with geographical inference, as well as a longitudinal analysis of point mutations, were performed to trace back their origin and contrast them with key RBD mutations in variant BQ.1, one of the fastest-growing lineages to date. RESULTS: Our ancestral reconstruction analysis portrayed Mexico as the most probable origin of the BW.1 and BW.1.1 variants. Two synonymous substitutions, T7666C and C14599T, support their Mexican origin, whereas other two mutations are specific to BW.1: S:N460K and ORF1a:V627I. Two additional substitutions and a deletion are found in its descending subvariant, BW.1.1. Mutations found in the receptor binding domain, S:K444T, S:L452R, S:N460K, and S:F486V in BW.1 have been reported to be relevant for immune escape and are also key mutations in the BQ.1 lineage. CONCLUSIONS: BW.1 appears to have arisen in the Yucatan Peninsula in Southeast Mexico sometime around July 2022 during the fifth COVID-19 wave. Its rapid growth may be in part explained by the relevant escape mutations also found in BQ.1.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , México/epidemiologia , COVID-19/epidemiologia , Filogenia , Mutação
11.
Front Public Health ; 11: 1095202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935725

RESUMO

Latin America is one of the regions in which the COVID-19 pandemic has a stronger impact, with more than 72 million reported infections and 1.6 million deaths until June 2022. Since this region is ecologically diverse and is affected by enormous social inequalities, efforts to identify genomic patterns of the circulating SARS-CoV-2 genotypes are necessary for the suitable management of the pandemic. To contribute to the genomic surveillance of the SARS-CoV-2 in Latin America, we extended the number of SARS-CoV-2 genomes available from the region by sequencing and analyzing the viral genome from COVID-19 patients from seven countries (Argentina, Brazil, Costa Rica, Colombia, Mexico, Bolivia, and Peru). Subsequently, we analyzed the genomes circulating mainly during 2021 including records from GISAID database from Latin America. A total of 1,534 genome sequences were generated from seven countries, demonstrating the laboratory and bioinformatics capabilities for genomic surveillance of pathogens that have been developed locally. For Latin America, patterns regarding several variants associated with multiple re-introductions, a relatively low percentage of sequenced samples, as well as an increment in the mutation frequency since the beginning of the pandemic, are in line with worldwide data. Besides, some variants of concern (VOC) and variants of interest (VOI) such as Gamma, Mu and Lambda, and at least 83 other lineages have predominated locally with a country-specific enrichments. This work has contributed to the understanding of the dynamics of the pandemic in Latin America as part of the local and international efforts to achieve timely genomic surveillance of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , América Latina/epidemiologia , Pandemias , Genótipo
12.
Viruses ; 15(1)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36680283

RESUMO

PURPOSE: The Omicron subvariant BA.1 of SARS-CoV-2 was first detected in November 2021 and quickly spread worldwide, displacing the Delta variant. In this work, a characterization of the spread of this variant in Mexico is presented. METHODS: The time to fixation of BA.1, the diversity of Delta sublineages, the population density, and the level of virus circulation during the inter-wave interval were determined to analyze differences in BA.1 spread. RESULTS: BA.1 began spreading during the first week of December 2021 and became dominant in the next three weeks, causing the fourth COVID-19 epidemiological surge in Mexico. Unlike previous variants, BA.1 did not exhibit a geographically distinct circulation pattern. However, a regional difference in the speed of the replacement of the Delta variant was observed. CONCLUSIONS: Viral diversity and the relative abundance of the virus in a particular area around the time of the introduction of a new lineage seem to have influenced the spread dynamics, in addition to population density. Nonetheless, if there is a significant difference in the fitness of the variants, or if the time allowed for the competition is sufficiently long, it seems the fitter virus will eventually become dominant, as observed in the eventual dominance of the BA.1.x variant in Mexico.


Assuntos
COVID-19 , Epidemias , Humanos , México/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2/genética
13.
J Exp Bot ; 74(5): 1642-1658, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36546370

RESUMO

Common bean (Phaseolus vulgaris L.) is one of the most consumed legumes in the human diet and a substantial source of dietary protein. A major problem for this rainfed crop is the decrease in grain yield caused by prolonged drought periods during the reproductive stage of plant development (terminal drought). Terminal drought remains a prevailing threat to the farming of this staple, with losses reaching >80%. Based on the high correlation between the resistance of common bean to terminal drought and efficient photoassimilate mobilization and biomass accumulation in seeds, we aimed to identify mechanisms implicated in its resistance to this stress. We used two representative Durango race common bean cultivars with contrasting yields under terminal drought, grown under well-watered or terminal drought conditions. Using comparative transcriptomic analysis focused on source leaves, pods, and seeds from both cultivars, we provide evidence indicating that under terminal drought the resistant cultivar promotes the build-up of transcripts involved in recycling carbon through photosynthesis, photorespiration, and CO2-concentrating mechanisms in pod walls, while in seeds, the induced transcripts participate in sink strength and respiration. Physiological data support this conclusion, implicating their relevance as key processes in the plant response to terminal drought.


Assuntos
Resistência à Seca , Phaseolus , Humanos , Phaseolus/metabolismo , Folhas de Planta/metabolismo , Grão Comestível , Secas
14.
Microb Genom ; 8(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36239595

RESUMO

The ability to respond to injury is essential for the survival of an organism and involves analogous mechanisms in animals and plants. Such mechanisms integrate coordinated genetic and metabolic reprogramming events requiring regulation by small RNAs for adequate healing of the wounded area. We have previously reported that the response to injury of the filamentous fungus Trichoderma atroviride involves molecular mechanisms closely resembling those of plants and animals that lead to the formation of new hyphae (regeneration) and the development of asexual reproduction structures (conidiophores). However, the involvement of microRNAs in this process has not been investigated in fungi. In this work, we explore the participation of microRNA-like RNAs (milRNAs) molecules by sequencing messenger and small RNAs during the injury response of the WT strain and RNAi mutants. We found that Dcr2 appears to play an important role in hyphal regeneration and is required to produce the majority of sRNAs in T. atroviride. We also determined that the three main milRNAs produced via Dcr2 are induced during the damage-triggered developmental process. Importantly, elimination of a single milRNA phenocopied the main defects observed in the dcr2 mutant. Our results demonstrate the essential role of milRNAs in hyphal regeneration and asexual development by post-transcriptionally regulating cellular signalling processes involving phosphorylation events. These observations allow us to conclude that fungi, like plants and animals, in response to damage activate fine-tuning regulatory mechanisms.


Assuntos
Hypocreales , MicroRNAs , Animais , Regulação Fúngica da Expressão Gênica , Hifas/genética , Hypocreales/genética , Hypocreales/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regeneração/genética
15.
Plants (Basel) ; 11(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36079658

RESUMO

Traditional agave spirits such as mezcal or tequila are produced all over Mexico using different species of Agave. Amongst them, A. angustifolia is the most popular given its agricultural extension. A. angustifolia is a wild species extensively distributed from North to Central America, and previous studies show that it is highly related to the tequila agave A. tequilana. In different regions of Mexico, A. angustifolia is cultivated under different types and levels of management, and although traditional producers identify several landraces, for the non-trained eye there are no perceivable differences. After interviews with producers from different localities in Jalisco, Mexico, we sampled A. angustifolia plants classified as different landraces, measured several morphological traits, and characterized their genetic differentiation and diversity at the genome-wide level. We included additional samples identified as A. tequilana and A. rhodacantha to evaluate their relationship with A. angustifolia. In contrast with previous studies, our pool of ca 20K high quality unlinked SNPs provided more information and helped us to distinguish different genetic groups that are congruent with the ethnobotanical landraces. We found no evidence to genetically delimitate A. tequilana, A. rhodacantha and A. angustifolia. Our large genome level dataset allows a better understanding of the genetic identity of important A. angustifolia traditional and autochthonous landraces.

16.
Elife ; 112022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35950750

RESUMO

Circadian clocks are important for an individual's fitness, and recent studies have underlined their role in the outcome of biological interactions. However, the relevance of circadian clocks in fungal-fungal interactions remains largely unexplored. We sought to characterize a functional clock in the biocontrol agent Trichoderma atroviride to assess its importance in the mycoparasitic interaction against the phytopathogen Botrytis cinerea. Thus, we confirmed the existence of circadian rhythms in T. atroviride, which are temperature-compensated and modulated by environmental cues such as light and temperature. Nevertheless, the presence of such molecular rhythms appears to be highly dependent on the nutritional composition of the media. Complementation of a clock null (Δfrq) Neurospora crassa strain with the T. atroviride-negative clock component (tafrq) restored core clock function, with the same period observed in the latter fungus, confirming the role of tafrq as a bona fide core clock component. Confrontation assays between wild-type and clock mutant strains of T. atroviride and B. cinerea, in constant light or darkness, revealed an inhibitory effect of light on T. atroviride's mycoparasitic capabilities. Interestingly, when confrontation assays were performed under light/dark cycles, T. atroviride's overgrowth capacity was enhanced when inoculations were at dawn compared to dusk. Deleting the core clock-negative element FRQ in B. cinerea, but not in T. atroviride, was vital for the daily differential phenotype, suggesting that the B. cinerea clock has a more significant influence on the result of this interaction. Additionally, we observed that T. atroviride clock components largely modulate development and secondary metabolism in this fungus, including the rhythmic production of distinct volatile organic compounds (VOCs). Thus, this study provides evidence on how clock components impact diverse aspects of T. atroviride lifestyle and how daily changes modulate fungal interactions and dynamics.


Assuntos
Botrytis , Proteínas CLOCK , Ritmo Circadiano , Proteínas Fúngicas , Hypocreales , Interações Microbianas , Metabolismo Secundário , Botrytis/crescimento & desenvolvimento , Botrytis/metabolismo , Botrytis/efeitos da radiação , Proteínas CLOCK/metabolismo , Ritmo Circadiano/efeitos da radiação , Proteínas Fúngicas/metabolismo , Hypocreales/crescimento & desenvolvimento , Hypocreales/metabolismo , Hypocreales/efeitos da radiação , Luz , Temperatura
17.
Viruses ; 14(6)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35746637

RESUMO

In this study, we analyzed the sequences of SARS-CoV-2 isolates of the Delta variant in Mexico, which has completely replaced other previously circulating variants in the country due to its transmission advantage. Among all the Delta sublineages that were detected, 81.5 % were classified as AY.20, AY.26, and AY.100. According to publicly available data, these only reached a world prevalence of less than 1%, suggesting a possible Mexican origin. The signature mutations of these sublineages are described herein, and phylogenetic analyses and haplotype networks are used to track their spread across the country. Other frequently detected sublineages include AY.3, AY.62, AY.103, and AY.113. Over time, the main sublineages showed different geographical distributions, with AY.20 predominant in Central Mexico, AY.26 in the North, and AY.100 in the Northwest and South/Southeast. This work describes the circulation, from May to November 2021, of the primary sublineages of the Delta variant associated with the third wave of the COVID-19 pandemic in Mexico and highlights the importance of SARS-CoV-2 genomic surveillance for the timely identification of emerging variants that may impact public health.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , México/epidemiologia , Pandemias , Filogenia , SARS-CoV-2/genética
18.
New Phytol ; 235(6): 2454-2465, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35708662

RESUMO

Fruit development has been central in the evolution and domestication of flowering plants. In common bean (Phaseolus vulgaris), the principal global grain legume staple, two main production categories are distinguished by fibre deposition in pods: dry beans, with fibrous, stringy pods; and stringless snap/green beans, with reduced fibre deposition, which frequently revert to the ancestral stringy state. Here, we identify genetic and developmental patterns associated with pod fibre deposition. Transcriptional, anatomical, epigenetic and genetic regulation of pod strings were explored through RNA-seq, RT-qPCR, fluorescence microscopy, bisulfite sequencing and whole-genome sequencing. Overexpression of the INDEHISCENT ('PvIND') orthologue was observed in stringless types compared with isogenic stringy lines, associated with overspecification of weak dehiscence-zone cells throughout the pod vascular sheath. No differences in DNA methylation were correlated with this phenotype. Nonstringy varieties showed a tandemly direct duplicated PvIND and a Ty1-copia retrotransposon inserted between the two repeats. These sequence features are lost during pod reversion and are predictive of pod phenotype in diverse materials, supporting their role in PvIND overexpression and reversible string phenotype. Our results give insight into reversible gain-of-function mutations and possible genetic solutions to the reversion problem, of considerable economic value for green bean production.


Assuntos
Phaseolus , Domesticação , Duplicação Gênica , Phaseolus/genética , Fenótipo , Retroelementos/genética
19.
Microbiol Spectr ; 10(2): e0224021, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35389245

RESUMO

During the coronavirus disease 2019 (COVID-19) pandemic, the emergence and rapid increase of the B.1.1.7 (Alpha) lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in the United Kingdom in September 2020, was well documented in different areas of the world and became a global public health concern because of its increased transmissibility. The B.1.1.7 lineage was first detected in Mexico during December 2020, showing a slow progressive increase in its circulation frequency, which reached its maximum in May 2021 but never became predominant. In this work, we analyzed the patterns of diversity and distribution of this lineage in Mexico using phylogenetic and haplotype network analyses. Despite the reported increase in transmissibility of the B.1.1.7 lineage, in most Mexican states, it did not displace cocirculating lineages, such as B.1.1.519, which dominated the country from February to May 2021. Our results show that the states with the highest prevalence of B.1.1.7 were those at the Mexico-U.S. border. An apparent pattern of dispersion of this lineage from the northern states of Mexico toward the center or the southeast was observed in the largest transmission chains, indicating possible independent introduction events from the United States. However, other entry points cannot be excluded, as shown by multiple introduction events. Local transmission led to a few successful haplotypes with a localized distribution and specific mutations indicating sustained community transmission. IMPORTANCE The emergence and rapid increase of the B.1.1.7 (Alpha) lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) throughout the world were due to its increased transmissibility. However, it did not displace cocirculating lineages in most of Mexico, particularly B.1.1.519, which dominated the country from February to May 2021. In this work, we analyzed the distribution of B.1.1.7 in Mexico using phylogenetic and haplotype network analyses. Our results show that the states with the highest prevalence of B.1.1.7 (around 30%) were those at the Mexico-U.S. border, which also exhibited the highest lineage diversity, indicating possible introduction events from the United States. Also, several haplotypes were identified with a localized distribution and specific mutations, indicating that sustained community transmission occurred in the country.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Genoma Viral , Humanos , México/epidemiologia , Filogenia , SARS-CoV-2/genética
20.
Fungal Genet Biol ; 159: 103672, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35150841

RESUMO

We investigated hyphae regeneration in Trichoderma atroviride and Neurospora crassa, with particular focus on determining the role of the actin cytoskeleton after mechanical injury. Filamentous actin (F-actin) dynamics was observed by live-cell confocal microscopy in both T. atroviride and N. crassa strains expressing Lifeact-GFP. In growing hyphae of both fungi, F-actin localized in three different structural forms: patches, cables and actomyosin rings. Most patches were conspicuously arranged in a collar in the hyphal subapex. A strong F-actin signal, likely actin filaments, colocalized with the core of the Spitzenkörper. Filaments and cables of F-actin were observed along the cortex throughout hyphae. Following mechanical damage at the margin of growing mycelia of T. atroviride and N. crassa, the severed hyphae lost their cytoplasmic contents, but plugging of the septal pore by a Woronin body occured, and the rest of the hyphal tube remained whole. In both fungi, patches of F-actin began accumulating next to the plugged septum. Regeneration was attained by the emergence of a new hyphal tube as an extension of the plugged septum wall. The septum wall was gradually remodeled into the apical wall of the emerging hypha. Whereas in T. atroviride the re-initiation of polarized growth took  âˆ¼ 1 h, in N. crassa, actin patch accumulation began almost immediately, and new growing hyphae were observed âˆ¼ 30 min after injury. By confocal microscopy, we found that chitin synthase 1 (CHS-1), a microvesicle (chitosome) component, accumulated next to the plugged septum in regenerating hyphae of N. crassa. We concluded that the actin cytoskeleton plays a key role in hyphal regeneration by supporting membrane remodeling, helping to facilitate transport of vesicles responsible for new wall growth and organization of the new tip-growth apparatus.


Assuntos
Lepidópteros , Neurospora crassa , Citoesqueleto de Actina/genética , Actinas/genética , Animais , Hifas , Hypocreales , Neurospora crassa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...