Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PeerJ ; 11: e14587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36785710

RESUMO

Mangroves are unique coastal ecosystems, which have many important ecological functions, as they are a reservoir of many marine species well adapted to saline conditions and are fundamental as sites of carbon storage. Although the microbial contribution to nutrient cycling in these ecosystems has been well recognized, there is a lack of information regarding the microbial composition and structure of different ecological types of mangrove forests. In this study, we characterized the microbial community (Bacteria and Archaea) in sediments associated with five ecological types of mangrove forests in a coastal lagoon dominated by Avicennia germinans and Rhizophora mangle, through 16S rRNA-V4 gene sequencing. Overall, Proteobacteria (51%), Chloroflexi (12%), Gemmatimonadetes (5%) and Planctomycetes (6%) were the most abundant bacterial phyla, while Thaumarchaeota (30%), Bathyarchaeota (21%) and Nanoarchaeaeota (18%) were the dominant archaeal phyla. The microbial composition associated with basin mangroves dominated by Avicennia germinans was significantly different from the other ecological types, which becomes relevant for restoration strategies.


Assuntos
Avicennia , Microbiota , México , RNA Ribossômico 16S/genética , Áreas Alagadas , Avicennia/genética , Bactérias/genética , Archaea/genética , Microbiota/genética
2.
Bull Environ Contam Toxicol ; 108(2): 182-189, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35048173

RESUMO

Due to karstic bedrock geology and poor wastewater management practices, anthropogenic activities are impacting water quality in Yucatan's aquatic systems. Specifically, raw wastewater inputs to the aquifer subsequently flow to coastal lagoons through groundwater fluxes. This study establishes the presence of anthropogenic wastewater by measuring caffeine and its metabolite, paraxanthine, in four of Yucatan's major coastal lagoons: Celestun, Chelem, Dzilam de Bravo, and Ria Lagartos. Concentrations of caffeine ranged from non-detected (ND) to 2390 ng L-1 and paraxanthine from ND to 212 ng L-1, which correspond with pollution threats from anthropogenic wastewater inputs. The potential sources are: (1) direct in situ discharges from nearby urban settlements; and (2) contribution from submerged groundwater discharges. Overall, results indicate the potential of caffeine as an environmental tracer of anthropogenic wastewater contamination for the region.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Cafeína/análise , Monitoramento Ambiental , México , Teofilina , Águas Residuárias , Poluentes Químicos da Água/análise
3.
Bull Environ Contam Toxicol ; 108(1): 24-29, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33813633

RESUMO

We aimed to compare the percentage of explained variance given by the relationship of species and functional groups of metazoan parasites of the dusky flounder Syacium papillosum and environmental variables from water and sediments in the Yucatan shelf (YS). Parasite data were obtained from 127 S. papillosum specimens collected from 17 of 67 stations. At each station, 46 environmental variables were measured, including hydrocarbons, heavy metals, and physicochemical variables from water and sediments. Fifteen functional groups were defined based on biological characteristics of 48 parasite species. Our multivariate statistical analyses showed that species and functional groups produced similar explained variance values (47.3% and 50% respectively). However, using functional groups the time and financial resources were minimal compared with those used for morphological and molecular identification to produce the species composition matrix. Thus, functional groups are the best choice from the point of view of saving time and money.


Assuntos
Doenças dos Peixes , Linguado , Parasitos , Animais , Biomarcadores Ambientais , Saúde Ambiental , México
4.
Bull Environ Contam Toxicol ; 108(1): 55-63, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34272966

RESUMO

Oiling scenarios following spills vary in concentration and usually can affect large coastal areas. Consequently, this research evaluated different crude oil concentrations (10, 40, and 80 mg L-1) on the nearshore phytoplanktonic community in the southern Gulf of Mexico. This experiment was carried out for ten days using eight units of 2500 L each; factors monitored included shifts in phytoplankton composition, physicochemical parameters and the culturable bacterial abundance of heterotrophic and hydrocarbonoclastic groups. The temperature, salinity, and nutrient concentrations measured were within the ranges previously reported for Yucatan Peninsula waters. The total hydrocarbon concentration (TPH) in the control at T0 indicated the presence of hydrocarbons (PAHs 0.80 µg L-1, aliphatics 7.83 µg L-1 and UCM 184.09 µg L-1). At T0, the phytoplankton community showed a similar assemblage structure and composition in all treatments. At T10, the community composition remained heterogeneous in the control, in agreement with previous reports for the area. However, for oiled treatments, Bacillariophyceae dominated at T10. Hydrocarbonoclastic bacteria were associated with oiled treatments throughout the experiment, while heterotrophic bacteria were associated with control conditions. Our results agreed with previous works at the taxonomic level showing the presence of Bacillariophyceae and Dinophyceae in oil-related treatments, where these groups showed the major interactions in co-occurrence networks. In contrast, Chlorophyceae showed the key node in the co-occurrence network for the control. This study aims to contribute to knowledge on phytoplankton community shifts during a crude oil spill in subtropical oligotrophic regions.


Assuntos
Diatomáceas , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Golfo do México , Poluição por Petróleo/análise , Fitoplâncton
5.
PeerJ ; 9: e12109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595067

RESUMO

Seagrass meadows provide multiple ecosystem services, including carbon sequestration. However, seagrass meadows are among the most threatened ecosystems worldwide. Determining the magnitude of the carbon stocks in seagrass meadows at the regional scale allows for the estimation of their global magnitude and identification of their importance in regional environmental mitigation strategies. The objective of the present study was to determine the structure of seagrass meadows in the Los Petenes Biosfera Reserve (LPBR) and evaluate their contributions to sinks of carbon in this system, located in Yucatan, which is considered the region with the largest seagrass extension in Mexico. Analyses of the seagrass meadows were executed following standardized protocols (spectral analysis, and isotope and carbon stock analyses). The LPBR stores an average of 2.2 ± 1.7 Mg C ha-1 in living biomass and 318 ± 215 Mg C ha-1 in sediment (top 1 m), and this carbon stock decreases with water depth. The seagrass community extends 149,613 ha, which represents the largest organic carbon stock (47 Tg C) documented in seagrass meadows in Mexico. Macroalgae and seagrass represent 76% of the organic carbon stored in sediment. If LPBR seagrass meadows are lost due to natural or anthropogenic impacts, 173 Tg CO2eqemissions could be released, which corresponds to the emissions generated by fossil fuel combustion of 27% of the current Mexican population. This information emphasizes the importance of seagrass meadows as a carbon sink in the region and their contribution to climate change mitigation, thus allowing for the implementation of necessary conservation strategies.

6.
PLoS One ; 15(8): e0237701, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32817628

RESUMO

Mangroves are highly productive ecosystems that provide important environmental services, but have been impacted massively in recent years by human activities. Studies of mangroves have focused on their ecology and function at local or landscape scales, but little has been done to understand their broader distributional patterns or the environmental factors that determine those distributions. Species distribution models (SDMs), have been used to estimate potential distributions of hundreds of species, yet no SDM studies to date have assessed mangrove community distributions in Mexico (the country with the fourth largest extent of this ecosystem). We used maximum entropy approaches to model environmental suitability for mangrove species distributions in the country, and to identify the environmental factors most important in determining those distributions. We also evaluated whether this modeling approach is adequate to estimate mangrove distribution as a community across Mexico. Best models were selected based on statistical significance (AUC ratio), predictive performance (omission error of 5%), and model complexity (Akaike criterion); after this evaluation, only one model per species met the three evaluation criteria. Environmental variable sets that included distance to coast yielded significantly better models; variables with strongest contributions included elevation, temperature of the coldest month, and organic carbon content of soil. Based on our results, we conclude that SDMs can be used to map mangrove communities in Mexico, but that results can be improved at local scales with inclusion of local variables (salinity, hydroperiod and microtopography), field validations, and remote sensing data.


Assuntos
Conservação dos Recursos Naturais , Ecologia , Ecossistema , Áreas Alagadas , Atividades Humanas , Humanos , México , Modelos Teóricos , Solo
7.
PeerJ ; 8: e8790, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292646

RESUMO

Mexico has more than 750,000 ha of mangroves and more than 400,000 ha of seagrasses. However, approximately 200,000 ha of mangroves and an unknown area of seagrass have been lost due to coastal development associated with urban, industrial and tourist purposes. In 2018, the approved reforms to the General Law on Climate Change (LGCC) aligned the Mexican law with the international objectives established in the 2nd Article of the Paris Agreement. This action proves Mexico's commitment to contributing to the global target of stabilizing the greenhouse gas emissions concentration in the planet. Thus, restoring and conserving mangrove and seagrass habitats could contribute to fulfilling this commitment. Therefore, as a first step in establishing a mitigation and adaptation plan against climate change with respect to conservation and restoration actions of these ecosystems, we evaluated Mexican blue carbon ecosystems through a systematic review of the carbon stock using the standardized method of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We used the data from 126 eligible studies for both ecosystems (n = 1220). The results indicated that information is missing at the regional level. However, the average above and below ground organic carbon stocks from mangroves in Mexico is 113.6 ± 5.5 (95% CI [99.3-118.4]) Mg Corg ha-1 and 385.1 ± 22 (95% CI [344.5-431.9]) Mg Corg ha-1, respectively. The variability in the Corg stocks for both blue carbon ecosystems in Mexico is related to variations in climate, hydrology and geomorphology observed along the country's coasts in addition to the size and number of plots evaluated with respect to the spatial cover. The highest values for mangroves were related to humid climate conditions, although in the case of seagrasses, they were related to low levels of hydrodynamic stress. Based on the official extent of mangrove and seagrass area in Mexico, we estimate a total carbon stock of 237.7 Tg Corg from mangroves and 48.1 Tg Corg from seagrasses. However, mangroves and seagrasses are still being lost due to land use change despite Mexican laws meant to incorporate environmental compensation. Such losses are largely due to loopholes in the legal framework that dilute the laws' effectiveness and thus ability to protect the ecosystem. The estimated emissions from land use change under a conservative approach in mangroves of Mexico were approximately 24 Tg CO2e in the last 20 years. Therefore, the incorporation of blue carbon into the carbon market as a viable source of supplemental finance for mangrove and seagrass protection is an attractive win-win opportunity.

8.
Microorganisms ; 7(10)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614583

RESUMO

The southern Gulf of Mexico (sGoM) is highly susceptible to receiving environmental impacts due to the recent increase in oil-related activities. In this study, we assessed the changes in the bacterioplankton community structure caused by a simulated oil spill at mesocosms scale. The 16S rRNA gene sequencing analysis indicated that the initial bacterial community was mainly represented by Gamma-proteobacteria, Alpha-proteobacteria, Flavobacteriia, and Cyanobacteria. The hydrocarbon degradation activity, measured as the number of culturable hydrocarbonoclastic bacteria (CHB) and by the copy number of the alkB gene, was relatively low at the beginning of the experiment. However, after four days, the hydrocarbonoclastic activity reached its maximum values and was accompanied by increases in the relative abundance of the well-known hydrocarbonoclastic Alteromonas. At the end of the experiment, the diversity was restored to similar values as those observed in the initial time, although the community structure and composition were clearly different, where Marivita, Pseudohongiella, and Oleibacter were detected to have differential abundances on days eight-14. These changes were related with total nitrogen (p value = 0.030 and r2 = 0.22) and polycyclic aromatic hydrocarbons (p value = 0.048 and r2 = 0.25), according to PERMANOVA. The results of this study contribute to the understanding of the potential response of the bacterioplankton from sGoM to crude oil spills.

9.
Parasit Vectors ; 12(1): 277, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151478

RESUMO

BACKGROUND: We assessed metrics of the metazoan parasite infracommunities of the dusky flounder (Syacium papillosum) as indicators of aquatic environmental health of the Yucatan Shelf (YS) prior to oil extraction. We sampled the dusky flounder and its parasites along the YS, mostly during the 2015 north wind season (November-April). Our aims were: (i) to determine whether the parasite infracommunity metrics of S. papillosum exhibit significant differences among YS subregions; (ii) to determine whether the probability of the occurrence of its parasite species and individuals were affected by environmental variables, nutrients, heavy metals and hydrocarbons at the seascape level; and (iii) to determine whether there were statistical differences between the parasite infracommunity metrics of S. papillosum from YS and those of Syacium gunteri from the Campeche Sound. Multivariate statistical analyses and generalised additive models (GAMs) were used to examine the potential statistical associations between the contaminants, environmental variables and parasite community metrics, and the maximum entropy algorithm (MaxEnt) was used to characterise the habitat's suitability for the parasite's probability of occurrence. RESULTS: We recovered 48 metazoan parasite species from 127 S. papillosum, with larval cestodes and digeneans being the most numerically-dominant. Multivariate analyses showed significant differences in parasite infracommunity metrics among Western YS, Mid YS and Caribbean subregions, with the latter being the richest in species but not in individuals. The GAM and MaxEnt results indicated a negative effect of top predators (e.g. sharks and rays) removal on parasite metrics. The parasite infracommunities of S. papillosum were twice as rich in the number of species and individuals as those reported for S. gunteri from the Campeche Sound. CONCLUSIONS: The significant differences among subregions in parasite metrics were apparently due to the interruption of the Yucatan current during the north wind season. The fishing of top predators in combination with an influx of nutrients and hydrocarbons in low concentrations coincides with an increase in larval cestodes and digeneans in S. papillosum. The dusky flounder inhabits a region (YS) with a larger number of metazoan parasite species compared with those available for S. gunteri in the Campeche Sound, suggesting better environmental conditions for transmission in the YS.


Assuntos
Biomarcadores Ambientais , Doenças dos Peixes/parasitologia , Linguado/parasitologia , Parasitos/isolamento & purificação , Animais , Biota , Doenças dos Peixes/epidemiologia , México/epidemiologia , Análise Multivariada , Parasitos/classificação
10.
Ecol Evol ; 8(22): 11083-11099, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30519427

RESUMO

The environmental variability at local scale results in different physiognomic types of mangrove forest. However, this variability has never been considered in studies of mangrove genetic variability. This study analyzed the genetic and morphological variability and structure of Rhizophora mangle at regional and local scales in the Yucatan Peninsula. Thirteen mangrove populations (eight scrub and five tall), located in seven sites, were sampled, and their morphological variability and relationship with the availability of phosphorus and salinity were analyzed. The diversity and genetic structure were estimated at different hierarchical levels with nine microsatellites, also Bayesian inference and Principal Coordinates Analysis were used. We found a great morphological variability of R. mangle that responded to local environmental variability and not to the precipitation gradient of the peninsula. The genetic diversity found in the peninsula was greater than that reported for other populations in Mexico and was grouped into two regions: the Gulf of Mexico and the Caribbean Sea. At a local scale, tall and scrub mangroves had significant genetic differentiation suggesting that ecological barriers promote genetic differentiation within sites. These results need to be considered in future population genetic studies and for mangrove management and conservation.

11.
Mar Pollut Bull ; 119(1): 396-406, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28342593

RESUMO

Eutrophication causes the major impact in the coastal waters of the state of Yucatan. In general, loss of water quality and biological communities and massive development of toxic microorganisms are some of the consequences of this phenomenon. To reveal changes in species composition and cell abundance of the taxocoenosis of epibenthic dinoflagellates before and after a harmful algal bloom event in the water column that lasted about 150days (August-December 2011) in the Dzilam - San Crisanto area (northern Yucatan Peninsula, southeastern Gulf of Mexico) were the main objectives of the present study. In August 2011 and September 2012, sampling along 20 transects perpendicular to the coastline along the entire northern Yucatan coast, starting from 20 sampling sites from El Cuyo in the east to Celestún in the west, at a distance of 50, 150 and 250m from the coast, was carried out. Physicochemical characteristics measured before and after the bloom were within the ranges previously reported in the study area. Salinity was the most stable characteristic, with mean values of 36.25 and 36.42 in 2011 and 2012, respectively. Phosphates were the only parameter that showed a wide range with higher values before the bloom (0.03-0.54µM/l). A total of 168 macrophyte (seaweeds and seagrasses), sponge and sediment samples (105 in 2011 and 63 in 2012) that included associated microphytobenthos were taken by snorkeling from 0.7 to 5m depth. Six substrate types were distinguished: Chlorophyta, Phaeophyceae, Rhodophyta, Angiospermae (seagrasses), Demospongiae (sponges) and sediment. Chlorophytes dominated the collected samples: 38 samples in 2011 and 23 in 2012. Avrainvillea longicaulis f. laxa predominated before the bloom and Udotea flabellum after it. In total, 25 epibenthic dinoflagellate species from 11 genera were found. The genus Prorocentrum was the most representative in terms of the number of species. The highest total dinoflagellate cell abundances were observed in the sites with different types of macrophytes (up to 2441cells/g substrate wet weight in 2011 and up to 1068cells/g in 2012). The lowest cell densities were observed in the areas with scarce or no macrophytes on sandy seafloor. Before the bloom, Prorocentrum rhathymum (up to 4995cells/g) and P. cf. sipadanensis (up to 5275cells/g) were the most abundant, and after the bloom the latter was dominant (up to 3559cells/g); in 2012, both variety of substrates and dinoflagellate cell abundance diminished. A canonical correspondence analysis revealed significant relationships between the physicochemical variables and epiphytic/benthic dinoflagellate species either before or after the bloom. The pelagic bloom resulted in the loss of substrate for epiphytic dinoflagellates, which caused replacement of the dominant species and a decrease in cell abundance of the whole taxocoenosis.


Assuntos
Dinoflagellida , Monitoramento Ambiental , Proliferação Nociva de Algas , Biota , Eutrofização , Golfo do México , Salinidade
12.
PLoS One ; 11(10): e0164014, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27736904

RESUMO

This study was undertaken to determine the relationships between the biomass, morphometry, and density of short shoots (SS) of the tropical seagrass Thalassia testudinum and the physical-environmental forcing in the region. Seasonal sampling surveys were undertaken four times in Bahia de la Ascension, a shallow estuary in the western Mexican Caribbean, to measure plant morphology and environmental variables. The estuary has a fresh water-influenced inner bay, a large central basin and a marine zone featuring a barrier reef at the seaward margin. Leaf size was positively correlated with increasing salinity, but total biomass was not, being similar across most of the sites. Aboveground biomass exhibited seasonal differences in dry and rainy seasons along the bay, most markedly in the brackish inner bay where an abrupt decline in biomass coincided with the rainy season. The relationship between nutrients and biomass indicates that the aboveground/belowground biomass ratio increases as nutrient availability increases. Areal cover was inversely correlated with SS density during both dry and rainy seasons. Maximum SS recruitment coincided with the rainy season. Peaks in SS density were recorded in the freshwater-influenced inner bay during an ENSO cold phase in 2007 ("La Niña") which is associated with a wetter dry season and following a strong storm (Hurricane Dean). The onset of the rainy season influences both shoot density and T. testudinum biomass by controlling the freshwater input to the bay and thus, the system's salinity gradient and external nutrients supply from the coastal wetland.


Assuntos
Hydrocharitaceae/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Biomassa , Região do Caribe , Ecossistema , Golfo do México , Hydrocharitaceae/anatomia & histologia , México , Nitrogênio/análise , Fosfatos/análise , Folhas de Planta/anatomia & histologia , Chuva , Salinidade , Estações do Ano , Água do Mar/análise , Silicatos/análise , Clima Tropical
13.
PLoS One ; 8(2): e56569, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23457583

RESUMO

Coastal wetlands can have exceptionally large carbon (C) stocks and their protection and restoration would constitute an effective mitigation strategy to climate change. Inclusion of coastal ecosystems in mitigation strategies requires quantification of carbon stocks in order to calculate emissions or sequestration through time. In this study, we quantified the ecosystem C stocks of coastal wetlands of the Sian Ka'an Biosphere Reserve (SKBR) in the Yucatan Peninsula, Mexico. We stratified the SKBR into different vegetation types (tall, medium and dwarf mangroves, and marshes), and examined relationships of environmental variables with C stocks. At nine sites within SKBR, we quantified ecosystem C stocks through measurement of above and belowground biomass, downed wood, and soil C. Additionally, we measured nitrogen (N) and phosphorus (P) from the soil and interstitial salinity. Tall mangroves had the highest C stocks (987±338 Mg ha(-1)) followed by medium mangroves (623±41 Mg ha(-1)), dwarf mangroves (381±52 Mg ha(-1)) and marshes (177±73 Mg ha(-1)). At all sites, soil C comprised the majority of the ecosystem C stocks (78-99%). Highest C stocks were measured in soils that were relatively low in salinity, high in P and low in N∶P, suggesting that P limits C sequestration and accumulation potential. In this karstic area, coastal wetlands, especially mangroves, are important C stocks. At the landscape scale, the coastal wetlands of Sian Ka'an covering ≈172,176 ha may store 43.2 to 58.0 million Mg of C.


Assuntos
Carbono/metabolismo , Fenômenos Geológicos , Clima Tropical , Áreas Alagadas , Biomassa , Região do Caribe , México , Poaceae/metabolismo , Salinidade , Solo/química , Árvores/metabolismo , Madeira/metabolismo
14.
Environ Monit Assess ; 185(9): 7591-603, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23404548

RESUMO

The management of protected areas in karstic regions is a challenge because flooded cave systems form there and provide underground hydrological conducts that may link different zones. As a consequence, affectations to the protected areas can possibly occur as a consequence of human activities in remote areas and may therefore pass undetected. Thus, the monitoring of possible contaminants in these regions is becoming imperative. In this work, we analyze the concentration of essential (iron) and non-essential metals (cadmium and chromium) in the seagrass Thalassia testudinum that grows in Yalahau Lagoon, located in a near-to-pristine protected area of the Yucatán Peninsula, close to the rapidly developing touristic belt of the Mexican Caribbean. Salinity and silicate patterns show that Yalahau is an evaporation lagoon, where groundwater discharge is important. High iron (> 400 µg/g), cadmium (>4 µg/g), and chromium (≈ 1 µg/g) concentrations were found in the area of highest groundwater input of the lagoon. High levels (5.1 µg/g) were also found near the town dump. In the rest of the sampling sites, metal concentrations remained near to background levels as estimated from other works. Temporal changes of concentrations in the seagrass tissues show also a local input and an input from the groundwater that could provoke an environmental problem in the Yalahau Lagoon in the near future.


Assuntos
Cádmio/análise , Cromo/análise , Conservação dos Recursos Naturais , Hydrocharitaceae/química , Ferro/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , México , Água do Mar/química
15.
Rev Biol Trop ; 60(1): 157-72, 2012 Mar.
Artigo em Espanhol | MEDLINE | ID: mdl-22458216

RESUMO

The highly touristic Yucatán Peninsula is principally constituted with coastal marine environments. Like other coastal areas, this has been affected by the increase of waste water discharge, hydrological modifications and land use changes in the area. The phytoplankton community structure is one of the main components of coastal ecosystems and the most affected in hydrological processes. In order to follow the seasonal variations, the phytoplankton was characterized to follow the hydrological variability in two sites (Dzilam and Progreso) of the Northern Yucatán Peninsula. For this, cruises were carried out monthly during one year, from April 2004 to March 2005, with two samplings per season (dry, rainy and "nortes"). Hydrological variability was associated with seasonality and directly linked to groundwater discharges in the Dzilam area, and waste water discharges in the Progreso area. The highest nutrient concentrations occurred mainly during the rainy season. The phytoplankton community changes observed throughout the year suggested that the hydrological and chemical variability associated with seasonality and anthropogenic impacts have a strong influence. The substitution of diatoms by dinoflagellates as the dominant group in Progreso was the result of seasonal variability itself, but also could have been caused by eutrophic processes; while in Dzilam, the major presence of diatoms could have been favored by groundwater discharges. The results of this study can be used to understand the linkages between stressors from the anthropogenic activities and coastal water quality and changes.


Assuntos
Fitoplâncton/classificação , Estações do Ano , Água do Mar/química , Eliminação de Resíduos Líquidos , México , Densidade Demográfica , Espectrofotometria
16.
Rev. biol. trop ; 60(1): 157-172, Mar. 2012. ilus, graf, tab
Artigo em Espanhol | LILACS | ID: lil-657770

RESUMO

Seasonal variations of community structures phytoplankton in groundwater discharge areas along the Northern Yucatán Peninsula coast. The highly touristic Yucatán Peninsula is principally constituted with coastal marine environments. Like other coastal areas, this has been affected by the increase of waste water discharge, hydrological modifications and land use changes in the area. The phytoplankton community structure is one of the main components of coastal ecosystems and the most affected in hydrological processes. In order to follow the seasonal variations, the phytoplankton was characterized to follow the hydrological variability in two sites (Dzilam and Progreso) of the Northern Yucatán Peninsula. For this, cruises were carried out monthly during one year, from April 2004 to March 2005, with two samplings per season (dry, rainy and “nortes”).Hydrological variability was associated with seasonality and directly linked to groundwater discharges in the Dzilam area, and waste water discharges in the Progreso area. The highest nutrient concentrations occurred mainly during the rainy season. The phytoplankton community changes observed throughout the year suggested that the hydrological and chemical variability associated with seasonality and anthropogenic impacts have a strong influence. The substitution of diatoms by dinoflagellates as the dominant group in Progreso was the result of seasonal variability itself, but also could have been caused by eutrophic processes; while in Dzilam, the major presence of diatoms could have been favored by groundwater discharges. The results of this study can be used to understand the linkages between stressors from the anthropogenic activities and coastal water quality and changes.


La zona costera es el principal ambiente marino en la Península de Yucatán (SE, México). Sin embargo, se ha visto afectada con el incremento de las descargas de aguas residuales, modificaciones hidrológicas y cambios de uso del suelo. El fitoplancton es una de las comunidades más afectadas por la variabilidad hidrológica. Se caracterizó la estructura de la comunidad de fitoplancton en función de la variabilidad hidrológica en dos sitios (Dzilam y Progreso) a lo largo de la costa Norte de Yucatán. Se realizaron muestreos mensuales durante un año, de abril 2004 a marzo 2005, mediante dos muestreos por época (secas, lluvias y nortes). La variabilidad hidrológica se asocia al patrón climático y está ligado a los aportes de agua subterránea en Dzilam y a las aguas de desecho en Progreso. Estacionalmente, las mayores concentraciones de nutrientes se produjeron principalmente en época de lluvias. Los cambios observados en el fitoplancton a lo largo del año sugieren que la variabilidad hidrológica y química asociada a la estacionalidad y a los impactos antropogénicos tienen una fuerte influencia. La sustitución de diatomeas por dinoflagelados como grupo dominante en Progreso es el resultado de la variabilidad estacional en sí, pero también podría verse favorecido por procesos eutróficos. En Dzilam la mayor presencia de diatomeas es favorecida por las descargas de agua subterránea. Estos resultados pueden utilizarse para comprender los vínculos entre los factores de estrés de las actividades antropogénicas y la calidad del agua.


Assuntos
Fitoplâncton/classificação , Estações do Ano , Água do Mar/química , Eliminação de Resíduos Líquidos , México , Densidade Demográfica , Espectrofotometria
17.
Rev Biol Trop ; 59(1): 385-401, 2011 Mar.
Artigo em Espanhol | MEDLINE | ID: mdl-21516658

RESUMO

Hurricanes have increased in strength and frequency as a result of global climate change. This research was conducted to study the spatio-temporal distribution and changes of Thalassia testudinum, the dominant species in Bahia de la Ascension (Quintana Roo, Mexico), when affected by heavy weather conditions. To complete this objective, a 2001 Landsat ETM+ image and the information from 525 sampling stations on morpho-functional and coverage of T. testudinum were used, and the seeds generated for the classification of eight benthic habitats. To quantify the changes caused by two hurricanes, we used two images, one of 1988 (Gilberto) and another of 1995 (Roxanne); other three data sets (2003, 2005 and 2007) were also used to describe the study area without major weather effects. Six categorial maps were obtained and subjected to analysis by 8 Landscape Ecology indexes, that describe the spatial characteristics, structure, function, change of the elements (matrix-patch-corridor), effects on ecosystems, connectivity, edges, shape and patch habitat fragmentation. Models indicate that T. testudinum may be classified as a continuum (matrix), since the fragments were not observed intermittently, but as a progression from minimum to maximum areas in reference to their coverage (ecological corridors). The fragments do not have a regular shape, indicating that the impacts are recent and may be due to direct effects (high-intensity hurricanes) or indirect (sediment). Fragments of type "bare soils" have a discontinuous distribution, and are considered to be the sites that have remained stable over a long timescale. While more dense coverage areas ("beds", "medium prairie" and "prairie") have low fragmentation and high connection of fragments. Features have an irregular perimeter and radial growth of formal; suggesting that the impact of meteors has no effect on the resilience of T. testudinum in this ecosystem, indicating good environmental quality to grow in this bay.


Assuntos
Tempestades Ciclônicas , Ecossistema , Monitoramento Ambiental/métodos , Hydrocharitaceae/crescimento & desenvolvimento , Região do Caribe , México , Densidade Demográfica
18.
Rev. biol. trop ; 59(1): 385-401, mar. 2011. ilus, graf, mapas, tab
Artigo em Espanhol | LILACS | ID: lil-638074

RESUMO

Hurricane impact on Thalassia testudinum (Hydrocharitaceae) beds in the Mexican Caribbean. Hurricanes have increased in strength and frequency as a result of global climate change. This research was conducted to study the spatio-temporal distribution and changes of Thalassia testudinum, the dominant species in Bahia de la Ascension (Quintana Roo, Mexico), when affected by heavy weather conditions. To complete this objective, a 2001 Landsat ETM+ image and the information from 525 sampling stations on morpho-functional and coverage of T. testudinum were used, and the seeds generated for the classification of eight benthic habitats. To quantify the changes caused by two hurricanes, we used two images, one of 1988 (Gilberto) and another of 1995 (Roxanne); other three data sets (2003, 2005 and 2007) were also used to describe the study area without major weather effects. Six categorial maps were obtained and subjected to analysis by 8 Landscape Ecology indexes, that describe the spatial characteristics, structure, function, change of the elements (matrix-patch-corridor), effects on ecosystems, connectivity, edges, shape and patch habitat fragmentation. Models indicate that T. testudinum may be classified as a continuum (matrix), since the fragments were not observed intermittently, but as a progression from minimum to maximum areas in reference to their coverage (ecological corridors). The fragments do not have a regular shape, indicating that the impacts are recent and may be due to direct effects (high-intensity hurricanes) or indirect (sediment). Fragments of type "bare soils" have a discontinuous distribution, and are considered to be the sites that have remained stable over a long timescale. While more dense coverage areas ("beds", "medium prairie" and "prairie") have low fragmentation and high connection of fragments. Features have an irregular perimeter and radial growth of formal; suggesting that the impact of meteors has no effect on the resilience of T. testudinum in this ecosystem, indicating good environmental quality to grow in this bay. Rev. Biol. Trop. 59 (1): 385-401. Epub 2011 March 01.


Thalassia testudinum es la macrófita dominante en Bahía de la Ascensión (Quintana Roo, México), se estudió para conocer su distribución espacio- temporal y determinar si fue afectada por el paso de huracanes que se han visto incrementados en fuerza y frecuencia por el cambio climático. Partiendo de una imagen Landsat ETM+de 2001 y usando información de grandes grupos morfofuncionales y de cobertura de T. testudinum adquiridas en 525 estaciones de muestreo, se obtienen las semillas para la clasificación supervisada de los hábitats bénticos (8 clases). Con el fin de cuantificar los cambios ocasionados por dos huracanes, se usaron dos imágenes, una de 1988 (Gilberto) y 1995 (Roxanne) y tres más (2003, 2005 y 2007) para monitoreo sin efectos meteorológicos mayores; a estos 6 mapas categóricos se les aplicó un análisis de Ecología del Paisaje usando 8 índices que describen las características espaciales, de estructura, función, cambio de los elementos (matriz-mancha-corredor), efectos sobre el ecosistema, conectividad, bordes, forma del parche y fragmentación del hábitat. Los modelos indican que T. testudinum puede clasificarse como un continuo (matriz), pues los fragmentos no se observan de forma intermitente, sino como una progresión de zonas mínimas a máximas en referencia a su cobertura (corredores ecológicos). No poseen una forma regular, indicando que los impactos son recientes y pueden ser debidos a efectos directos (huracanes de alta intensidad) e indirectos (aporte de sedimentos). Los fragmentos de tipo "suelos desnudos" presentan una distribución discontinua, considerándose sitios que han permanecido estables en una larga escala de tiempo; las zonas con coberturas más densas ("camas", "praderas medias" y "praderas") presentan baja fragmentación y alta conexión de sus fragmentos. Las características de poseer un perímetro irregular y crecimiento de formal radial, sugieren que el impacto de los meteoros no tiene efecto en la capacidad de resiliencia de T. testudinum en este ecosistema, indicando el buen estado de la calidad ambiental de la bahía para su crecimiento.


Assuntos
Tempestades Ciclônicas , Ecossistema , Monitoramento Ambiental/métodos , Hydrocharitaceae/crescimento & desenvolvimento , Região do Caribe , México , Densidade Demográfica
19.
Environ Monit Assess ; 172(1-4): 493-505, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20162449

RESUMO

Human activities have altered the balance of ecosystems to the detriment of natural environments. Eutrophication is a serious risk in Yucatán, a state in the eastern peninsula of México where groundwater supplies the only freshwater to a karst shelf environment. While economic development in Yucatán is increasing, environmental awareness is lagging, and efficient waste treatment systems are lacking. To assess potential nitrogen and phosphorus inputs into the coastal zone of Yucatán, we analyzed government reports and the chemical composition of groundwater and aquaculture wastewater. Swine, poultry, and tourism are revealed as the main continental nutrient sources, while groundwater with high nitrate concentrations is the principal coastal nutrient source, a pattern similar to other river discharges around the world. This study demonstrates that environmental risk management practices must be implemented in the Yucatán region to protect groundwater quality.


Assuntos
Monitoramento Ambiental/métodos , Nitrogênio/análise , Fósforo/análise , Abastecimento de Água/análise , México
20.
Water Res ; 44(20): 5949-64, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20719354

RESUMO

Terrestrial and oceanic influences like groundwater discharges and/or oceanic upwelling define the hydrochemical and biological characteristics of near-shore regions. In karst environments, such as the Yucatan Peninsula (SE Mexico), the balance between these two influences on spatial and temporal scales is poorly understood. This study focused on near-shore waters within 200 m offshore along the Yucatan coast. The trophic status and hydrochemical zones of the study area were determined as a function of physical and nutrient data collected from 2005 to 2006. The main terrestrial influence was groundwater discharge, while the most important marine influence was related to seasonal changes in water turbulence. Spatial differences (p < 0.05) were observed among salinity, light extinction coefficient (k), NO(3)(-), NH(4)(+), and Chl-a. Seasonal differences were observed for all variables except for k. During the dry season, terrestrial influences are the dominant factor on near-shore hydrochemistry. The region around Dzilam exhibited the maximum influence of groundwater discharge estimated by salinity dissolution (δ). During the rainy and "nortes" seasons, there is a balance between oceanic and terrestrial influences. The trophic status measured using the TRIX index, indicated that near-shore waters were mainly oligo-mesotrophic; with a meso-eutrophic status in areas with documented anthropogenic impacts. Four hydrological zones were identified by a Canonical Variate Analysis (CVA) using salinity, NO(2)(-), k and NH(4)(+) as the main discriminating variables. Zones I and II showed almost pristine conditions, with well-balanced terrestrial-oceanic influences. In Zone III, terrestrial influences such as groundwater discharges and inland pollution suggesting human impacts were dominant respect to the effects of oceanic influences like upwelling and sediment resuspension caused by winds and oceanic currents. Zone IV received enhanced groundwater and associated nutrients. Anthropogenic activities have led to ecosystem degradation but the speed at which this occurs depends on local and regional characteristics. Therefore, this study has defined those characteristics so as to enact better management policies.


Assuntos
Monitoramento Ambiental/métodos , Água do Mar/análise , Oceanos e Mares , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...