Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 9: 863910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051539

RESUMO

In this study, the effects of orange essential oil (OEO) on the rumen fermentation, nutrient utilization, and methane (CH4) emissions of beef heifers fed a diet of bermudagrass (Cynodon dactylon) were examined. In addition, in vitro and in situ experiments were conducted. The in vitro experiment consisted of three treatments: control (CTL, no OEO), OEO1 (0.25% OEO), and OEO2 (0.5% OEO). The forage to concentrate ratio was 70:30 (dry matter [DM] basis) in all treatments. No changes in pH, proportions of volatile fatty acids, and the acetate:propionate ratio were observed (P > 0.05). The addition of 0.25% OEO resulted in a reduction in CH4 production (mL/g) relative to the control (P < 0.05). In the in situ experiment, 5 g of total mixed ration (CTL, OEO1, and OEO2) were incubated for 6, 12, 24, 48, and 72 h. Potential and effective degradability were not affected by OEO supplementation (P > 0.05). In the in vivo study, six crossbred beef heifers (Bos indicus × Bos taurus), fitted with rumen cannulas, were assigned to three different treatments: no additive (CTL), 0.25% OEO (OEO1), and 0.5% OEO (OEO2) in a replicated 3 × 3 Latin square (21-day periods). Heifers were fed at 2.8% body weight. In vivo CH4 production was measured in open-circuit respiration chambers. Reductions in gross energy consumption, apparent total tract digestibility, and rumen valerate concentration were observed for OEO2 compared to the control (P < 0.05). Additionally, decreases in CH4 emissions (g/day; P < 0.05) and CH4 (MJ gross energy intake/day; P < 0.05) were observed in response to supplementation of 0.5% OEO as compared to the CTL treatment. Thus, supplementation of 0.5% OEO reduced CH4 emissions (g/day) by 12% without impacting the DM intake of heifers fed bermudagrass hay as a basal ration.

2.
Animals (Basel) ; 11(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071608

RESUMO

In order to meet consumer needs, the livestock industry is increasingly seeking natural feed additives with the ability to improve the efficiency of nutrient utilization, alternatives to antibiotics, and mitigate methane emissions in ruminants. Chitosan (CHI) is a polysaccharide with antimicrobial capability against protozoa and Gram-positive and -negative bacteria, fungi, and yeasts while naringin (NA) is a flavonoid with antimicrobial and antioxidant properties. First, an in vitro gas production experiment was performed adding 0, 1.5, 3.0 g/kg of CHI and NA under a completely randomized design. The substrate containing forage and concentrate in a 70:30 ratio on a dry matter (DM) basis. Compounds increased the concentration of propionic acid, and a significant reduction in methane production was observed with the inclusion of CHI at 1.5 g/kg in in vitro experiments (p < 0.001). In a dry matter rumen degradability study for 96 h, there were no differences in potential and effective degradability. In the in vivo study, six crossbred heifers fitted with rumen cannulas were assigned to a 6 × 6 Latin square design according to the following treatments: control (CTL), no additive; chitosan (CHI1, 1.5 g/kg DMI); (CHI2, 3.0 g/kg DMI); naringin (NA1, 1.5 g/kg DMI); (NA2, 3.0 g/kg DMI) and a mixture of CHI and NA (1.5 + 1.5 g/kg DMI) given directly through the rumen cannula. Additives did not affect rumen fermentation (p > 0.05), DM intake and digestibility of (p > 0.05), and enteric methane emissions (p > 0.05). CHI at a concentration of 1.5 g/kg DM in in vitro experiments had a positive effect on fermentation pattern increasing propionate and reduced methane production. In contrast, in the in vivo studies, there was not a positive effect on rumen fermentation, nor in enteric methane production in crossbred heifers fed a basal ration of tropical grass.

3.
Animals (Basel) ; 9(11)2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717570

RESUMO

Livestock production is a main source of anthropogenic greenhouse gases (GHG). The main gases are CH4 with a global warming potential (GWP) 25 times and nitrous oxide (N2O) with a GWP 298 times, that of carbon dioxide (CO2) arising from enteric fermentation or from manure management, respectively. In fact, CH4 is the second most important GHG emitted globally. This current scenario has increased the concerns about global warming and encouraged the development of intensive research on different natural compounds to be used as feed additives in ruminant rations and modify the rumen ecosystem, fermentation pattern, and mitigate enteric CH4. The compounds most studied are the secondary metabolites of plants, which include a vast array of chemical substances like polyphenols and saponins that are present in plant tissues of different species, but the results are not consistent, and the extraction cost has constrained their utilization in practical animal feeding. Other new compounds of interest include polysaccharide biopolymers such as chitosan, mainly obtained as a marine co-product. As with other compounds, the effect of chitosan on the rumen microbial population depends on the source, purity, dose, process of extraction, and storage. In addition, it is important to identify compounds without adverse effects on rumen fermentation. The present review is aimed at providing information about chitosan for dietary manipulation to be considered for future studies to mitigate enteric methane and reduce the environmental impact of GHGs arising from livestock production systems. Chitosan is a promising agent with methane mitigating effects, but further research is required with in vivo models to establish effective daily doses without any detrimental effect to the animal and consider its addition in practical rations as well as the economic cost of methane mitigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...