Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Arch Bronconeumol ; 57(7): 457-463, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35698951

RESUMO

INTRODUCTION: Alpha-1 antitrypsin deficiency (AATD) is a genetic condition resulting in lung and liver disease with a great clinical variability. MicroRNAs have been identified as disease modifiers; therefore miRNA deregulation could play an important role in disease heterogeneity. Members of miR-320 family are involved in regulating of multiple processes including inflammation, and have potential specific binding sites in the 3'UTR region of SERPINA1 gene. In this study we explore the involvement of miR-320c, a member of this family, in this disease. METHODS: Firstly in vitro studies were carried out to demonstrate regulation of SERPINA1 gene by miR-320. Furthermore, the expression of miR-320c was analyzed in the blood of 98 individuals with different AAT serum levels by using quantitative PCR and expression was correlated to clinical parameters of the patients. Finally, HL60 cells were used to analyze induction of miR-320c in inflammatory conditions. RESULTS: Overexpression of miR-320 members in human HepG2 cells led to inhibition of SERPINA1 expression. Analysis of miR-320c expression in patient's samples revealed significantly increased expression of miR-320c in individuals with pulmonary disease. Additionally, HL60 cells treated with the pro-inflammatory factor lipopolysaccharide (LPS) showed increase in miR-320c expression, suggesting that miR-320c responds to inflammation. CONCLUSION: Our findings demonstrate that miR-320c inhibits SERPINA1 expression in a hepatic cell line and its levels in blood are associated with lung disease in a cohort of patients with different AAT serum levels. These results suggest that miR-320c can play a role in AAT regulation and could be a biomarker of inflammatory processes in pulmonary diseases.


Assuntos
Pneumopatias , MicroRNAs , Deficiência de alfa 1-Antitripsina , alfa 1-Antitripsina , Regiões 3' não Traduzidas , Humanos , Inflamação/genética , Pulmão , Pneumopatias/genética , MicroRNAs/genética , alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/genética
2.
Blood ; 136(18): 2003-2017, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32911536

RESUMO

The majority of childhood leukemias are precursor B-cell acute lymphoblastic leukemias (pB-ALLs) caused by a combination of prenatal genetic predispositions and oncogenic events occurring after birth. Although genetic predispositions are frequent in children (>1% to 5%), fewer than 1% of genetically predisposed carriers will develop pB-ALL. Although infectious stimuli are believed to play a major role in leukemogenesis, the critical determinants are not well defined. Here, by using murine models of pB-ALL, we show that microbiome disturbances incurred by antibiotic treatment early in life were sufficient to induce leukemia in genetically predisposed mice, even in the absence of infectious stimuli and independent of T cells. By using V4 and full-length 16S ribosomal RNA sequencing of a series of fecal samples, we found that genetic predisposition to pB-ALL (Pax5 heterozygosity or ETV6-RUNX1 fusion) shaped a distinct gut microbiome. Machine learning accurately (96.8%) predicted genetic predisposition using 40 of 3983 amplicon sequence variants as proxies for bacterial species. Transplantation of either wild-type (WT) or Pax5+/- hematopoietic bone marrow cells into WT recipient mice revealed that the microbiome is shaped and determined in a donor genotype-specific manner. Gas chromatography-mass spectrometry (GC-MS) analyses of sera from WT and Pax5+/- mice demonstrated the presence of a genotype-specific distinct metabolomic profile. Taken together, our data indicate that it is a lack of commensal microbiota rather than the presence of specific bacteria that promotes leukemia in genetically predisposed mice. Future large-scale longitudinal studies are required to determine whether targeted microbiome modification in children predisposed to pB-ALL could become a successful prevention strategy.


Assuntos
Suscetibilidade a Doenças , Disbiose/complicações , Fezes/microbiologia , Microbioma Gastrointestinal , Leucemia Experimental/prevenção & controle , Fator de Transcrição PAX5/fisiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/prevenção & controle , Animais , Feminino , Leucemia Experimental/genética , Leucemia Experimental/microbiologia , Leucemia Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/microbiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia
3.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-32439252

RESUMO

INTRODUCTION: Alpha-1 antitrypsin deficiency (AATD) is a genetic condition resulting in lung and liver disease with a great clinical variability. MicroRNAs have been identified as disease modifiers; therefore miRNA deregulation could play an important role in disease heterogeneity. Members of miR-320 family are involved in regulating of multiple processes including inflammation, and have potential specific binding sites in the 3'UTR region of SERPINA1 gene. In this study we explore the involvement of miR-320c, a member of this family, in this disease. METHODS: Firstly in vitro studies were carried out to demonstrate regulation of SERPINA1 gene by miR-320. Furthermore, the expression of miR-320c was analyzed in the blood of 98 individuals with different AAT serum levels by using quantitative PCR and expression was correlated to clinical parameters of the patients. Finally, HL60 cells were used to analyze induction of miR-320c in inflammatory conditions. RESULTS: Overexpression of miR-320 members in human HepG2 cells led to inhibition of SERPINA1 expression. Analysis of miR-320c expression in patient's samples revealed significantly increased expression of miR-320c in individuals with pulmonary disease. Additionally, HL60 cells treated with the pro-inflammatory factor lipopolysaccharide (LPS) showed increase in miR-320c expression, suggesting that miR-320c responds to inflammation. CONCLUSION: Our findings demonstrate that miR-320c inhibits SERPINA1 expression in a hepatic cell line and its levels in blood are associated with lung disease in a cohort of patients with different AAT serum levels. These results suggest that miR-320c can play a role in AAT regulation and could be a biomarker of inflammatory processes in pulmonary diseases.

4.
Nat Commun ; 10(1): 5563, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804490

RESUMO

The prerequisite to prevent childhood B-cell acute lymphoblastic leukemia (B-ALL) is to decipher its etiology. The current model suggests that infection triggers B-ALL development through induction of activation-induced cytidine deaminase (AID; also known as AICDA) in precursor B-cells. This evidence has been largely acquired through the use of ex vivo functional studies. However, whether this mechanism governs native non-transplant B-ALL development is unknown. Here we show that, surprisingly, AID genetic deletion does not affect B-ALL development in Pax5-haploinsufficient mice prone to B-ALL upon natural infection exposure. We next test the effect of premature AID expression from earliest pro-B-cell stages in B-cell transformation. The generation of AID off-target mutagenic activity in precursor B-cells does not promote B-ALL. Likewise, known drivers of human B-ALL are not preferentially targeted by AID. Overall these results suggest that infections promote B-ALL through AID-independent mechanisms, providing evidence for a new model of childhood B-ALL development.


Assuntos
Linfócitos B/metabolismo , Transformação Celular Neoplásica/metabolismo , Citidina Desaminase/metabolismo , Infecções/fisiopatologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Animais , Linfócitos B/patologia , Transformação Celular Neoplásica/genética , Criança , Citidina Desaminase/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Infecções/genética , Estimativa de Kaplan-Meier , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética
6.
EMBO J ; 37(14)2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29880602

RESUMO

The impact of LMO2 expression on cell lineage decisions during T-cell leukemogenesis remains largely elusive. Using genetic lineage tracing, we have explored the potential of LMO2 in dictating a T-cell malignant phenotype. We first initiated LMO2 expression in hematopoietic stem/progenitor cells and maintained its expression in all hematopoietic cells. These mice develop exclusively aggressive human-like T-ALL In order to uncover a potential exclusive reprogramming effect of LMO2 in murine hematopoietic stem/progenitor cells, we next showed that transient LMO2 expression is sufficient for oncogenic function and induction of T-ALL The resulting T-ALLs lacked LMO2 and its target-gene expression, and histologically, transcriptionally, and genetically similar to human LMO2-driven T-ALL We next found that during T-ALL development, secondary genomic alterations take place within the thymus. However, the permissiveness for development of T-ALL seems to be associated with wider windows of differentiation than previously appreciated. Restricted Cre-mediated activation of Lmo2 at different stages of B-cell development induces systematically and unexpectedly T-ALL that closely resembled those of their natural counterparts. Together, these results provide a novel paradigm for the generation of tumor T cells through reprogramming in vivo and could be relevant to improve the response of T-ALL to current therapies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese , Transformação Celular Neoplásica , Proteínas com Domínio LIM/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/fisiologia , Histocitoquímica , Camundongos , Timo/patologia
7.
Int J Mol Sci ; 19(5)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29772764

RESUMO

Due to the clonal nature of human leukemia evolution, all leukemic cells carry the same leukemia-initiating genetic lesions, independently of the intrinsic tumoral cellular heterogeneity. However, the latest findings have shown that the mode of action of oncogenes is not homogeneous throughout the developmental history of leukemia. Studies on different types of hematopoietic tumors have shown that the contribution of oncogenes to leukemia is mainly mediated through the epigenetic reprogramming of the leukemia-initiating target cell. This driving of cancer by a malignant epigenetic stem cell rewiring is, however, not exclusive of the hematopoietic system, but rather represents a common tumoral mechanism that is also at work in epithelial tumors. Tumoral epigenetic reprogramming is therefore a new type of interaction between genes and their target cells, in which the action of the oncogene modifies the epigenome to prime leukemia development by establishing a new pathological tumoral cellular identity. This reprogramming may remain latent until it is triggered by either endogenous or environmental stimuli. This new view on the making of leukemia not only reveals a novel function for oncogenes, but also provides evidence for a previously unconsidered model of leukemogenesis, in which the programming of the leukemia cellular identity has already occurred at the level of stem cells, therefore showing a role for oncogenes in the timing of leukemia initiation.


Assuntos
Leucemia/etiologia , Leucemia/metabolismo , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Reprogramação Celular , Meio Ambiente , Epigênese Genética , Predisposição Genética para Doença , Hematopoese/genética , Humanos , Leucemia/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Oncogenes
8.
J Bus Psychol ; 33(2): 311-323, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527093

RESUMO

Purpose: The purpose of this study was to investigate how high-quality dyadic co-worker relationships (CWXs) favour or hinder team performance. Specifically, we examine the role played by CWX, team creative environment, job complexity and task interdependence to achieve higher levels of team performance. Design/Methodology/Approach: We analyse data from 410 individuals belonging to 81 R&D teams in technology sciences to examine the quality of the dyadic relationships between team members under the same supervisor (co-workers) and team performance measured by the number of publications as their research output. Findings: Higher levels of team average CWX relationships are positively related to the establishment of a favourable creative team environment, ending into higher levels of team performance. Specifically, the role played by team average CWX in such relationship is stronger when job complexity and task interdependence are also high. Implications: Team's output not only depends on the leader and his/her relationships with subordinates but also on quality relationships among team members. CWXs contribute to creative team environments, but they are essential where jobs are complex and tasks are highly dependent. Originality/Value: This study provides evidence of the important role played by CWXs in determining a creative environment, irrespective of their leaders. Previous research has provided information about how leader's role affects team outcomes, but the role of dyadic co-worker relationships in a team remains still relatively unknown. Considering job complexity and task interdependence variables, the study provides with a better understanding about how and when high-quality CWXs should be promoted to achieve higher team performance.

9.
Cancer Res ; 78(10): 2669-2679, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29490943

RESUMO

Preleukemic clones carrying BCR-ABLp190 oncogenic lesions are found in neonatal cord blood, where the majority of preleukemic carriers do not convert into precursor B-cell acute lymphoblastic leukemia (pB-ALL). However, the critical question of how these preleukemic cells transform into pB-ALL remains undefined. Here, we model a BCR-ABLp190 preleukemic state and show that limiting BCR-ABLp190 expression to hematopoietic stem/progenitor cells (HS/PC) in mice (Sca1-BCR-ABLp190) causes pB-ALL at low penetrance, which resembles the human disease. pB-ALL blast cells were BCR-ABL-negative and transcriptionally similar to pro-B/pre-B cells, suggesting disease onset upon reduced Pax5 functionality. Consistent with this, double Sca1-BCR-ABLp190+Pax5+/- mice developed pB-ALL with shorter latencies, 90% incidence, and accumulation of genomic alterations in the remaining wild-type Pax5 allele. Mechanistically, the Pax5-deficient leukemic pro-B cells exhibited a metabolic switch toward increased glucose utilization and energy metabolism. Transcriptome analysis revealed that metabolic genes (IDH1, G6PC3, GAPDH, PGK1, MYC, ENO1, ACO1) were upregulated in Pax5-deficient leukemic cells, and a similar metabolic signature could be observed in human leukemia. Our studies unveil the first in vivo evidence that the combination between Sca1-BCR-ABLp190 and metabolic reprogramming imposed by reduced Pax5 expression is sufficient for pB-ALL development. These findings might help to prevent conversion of BCR-ABLp190 preleukemic cells.Significance: Loss of Pax5 drives metabolic reprogramming, which together with Sca1-restricted BCR-ABL expression enables leukemic transformation. Cancer Res; 78(10); 2669-79. ©2018 AACR.


Assuntos
Proteínas de Fusão bcr-abl/metabolismo , Regulação Leucêmica da Expressão Gênica/genética , Fator de Transcrição PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Animais , Linfócitos B/metabolismo , Linhagem Celular , Metabolismo Energético/genética , Proteínas de Fusão bcr-abl/genética , Glucose/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Fator de Transcrição PAX5/metabolismo , Pré-Leucemia/patologia
10.
Cancer Res ; 77(16): 4365-4377, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28630052

RESUMO

ETV6-RUNX1 is associated with the most common subtype of childhood leukemia. As few ETV6-RUNX1 carriers develop precursor B-cell acute lymphocytic leukemia (pB-ALL), the underlying genetic basis for development of full-blown leukemia remains to be identified, but the appearance of leukemia cases in time-space clusters keeps infection as a potential causal factor. Here, we present in vivo genetic evidence mechanistically connecting preleukemic ETV6-RUNX1 expression in hematopoetic stem cells/precursor cells (HSC/PC) and postnatal infections for human-like pB-ALL. In our model, ETV6-RUNX1 conferred a low risk of developing pB-ALL after exposure to common pathogens, corroborating the low incidence observed in humans. Murine preleukemic ETV6-RUNX1 pro/preB cells showed high Rag1/2 expression, known for human ETV6-RUNX1 pB-ALL. Murine and human ETV6-RUNX1 pB-ALL revealed recurrent genomic alterations, with a relevant proportion affecting genes of the lysine demethylase (KDM) family. KDM5C loss of function resulted in increased levels of H3K4me3, which coprecipitated with RAG2 in a human cell line model, laying the molecular basis for recombination activity. We conclude that alterations of KDM family members represent a disease-driving mechanism and an explanation for RAG off-target cleavage observed in humans. Our results explain the genetic basis for clonal evolution of an ETV6-RUNX1 preleukemic clone to pB-ALL after infection exposure and offer the possibility of novel therapeutic approaches. Cancer Res; 77(16); 4365-77. ©2017 AACR.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Histona Desmetilases/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/microbiologia , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/biossíntese , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Modelos Animais de Doenças , Células-Tronco Hematopoéticas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Proteínas de Fusão Oncogênica/biossíntese , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética
11.
Blood ; 129(19): 2645-2656, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28288979

RESUMO

CREBBP is targeted by inactivating mutations in follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL). Here, we provide evidence from transgenic mouse models that Crebbp deletion results in deficits in B-cell development and can cooperate with Bcl2 overexpression to promote B-cell lymphoma. Through transcriptional and epigenetic profiling of these B cells, we found that Crebbp inactivation was associated with broad transcriptional alterations, but no changes in the patterns of histone acetylation at the proximal regulatory regions of these genes. However, B cells with Crebbp inactivation showed high expression of Myc and patterns of altered histone acetylation that were localized to intragenic regions, enriched for Myc DNA binding motifs, and showed Myc binding. Through the analysis of CREBBP mutations from a large cohort of primary human FL and DLBCL, we show a significant difference in the spectrum of CREBBP mutations in these 2 diseases, with higher frequencies of nonsense/frameshift mutations in DLBCL compared with FL. Together, our data therefore provide important links between Crebbp inactivation and Bcl2 dependence and show a role for Crebbp inactivation in the induction of Myc expression. We suggest this may parallel the role of CREBBP frameshift/nonsense mutations in DLBCL that result in loss of the protein, but may contrast the role of missense mutations in the lysine acetyltransferase domain that are more frequently observed in FL and yield an inactive protein.


Assuntos
Linfócitos B/patologia , Proteína de Ligação a CREB/genética , Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Animais , Epigênese Genética , Deleção de Genes , Humanos , Linfoma Folicular/genética , Camundongos , Camundongos Transgênicos , Mutação
12.
Arch. bronconeumol. (Ed. impr.) ; 53(1): 13-18, ene. 2017. graf, tab
Artigo em Espanhol | IBECS | ID: ibc-159145

RESUMO

Introducción y objetivo: El Registro español de pacientes con déficit de alfa-1 antitripsina (REDAAT) se formó con el objetivo de mejorar el conocimiento sobre del DAAT. En este trabajo se evalúa el registro y se analiza la población de pacientes incluida en él. Métodos: Dispone de una base de datos alojada en la Web: www.redaat.es. Su base de datos recoge información clínica y funcional de individuos portadores de los fenotipos PiSZ, ZZ y variantes raras. Resultados: En la actualidad reúne información sobre 511 individuos procedentes de 103 centros sanitarios, gracias a la colaboración de 124 médicos. De ellos, 348 (74,2%) son homocigotos Pi*ZZ y 100 (19,5%) heterocigotos Pi*SZ. Existe una mayor concentración de casos en hospitales universitarios de tercer nivel. El 81% de los casos tiene enfermedad pulmonar y en menor proporción el DAAT se detectó por cribado familiar o enfermedad hepática. Se dispone de datos de seguimiento en el 45% de los casos, y un 35% recibieron tratamiento sustitutivo con alfa-1 antitripsina. Conclusiones: El REDAAT es una herramienta útil para obtener información de calidad sobre esta enfermedad minoritaria en condiciones de práctica clínica habitual, aunque obtener datos de seguimiento es difícil y no es posible conocer la representatividad de la muestra incluida


Introduction and objective: REDAAT, the Spanish Registry of Patients with Alpha-1 Antitrypsin Deficiency, was set up in order to improve knowledge of this disease. This study is an evaluation of the registry and an analysis of its patient population. Methods: The registry has a database hosted on the website www.redaat.es. It collects clinical and functional data on patients with PiSZ, ZZ phenotypes and other rare variants. Results: Thanks to the collaboration of 124 physicians, the registry currently contains information on 511 individuals from 103 healthcare centers. Of these 511, 348 (74.2%) are Pi*ZZ homozygotes, and 100 (19.5%) are Pi*SZ heterozygotes. More cases are seen in tertiary level hospitals. A total of 81% of the cases have respiratory disease, and a lower proportion of AATD cases were detected by family screening or liver disease. Follow-up data are available for 45% of the cases, and 35% received alpha-1 antitripsin replacement therapy. Conclusions: The REDAAT registry is a useful tool for obtaining quality information about this minority disease in routine clinical practice conditions, although it is difficult to obtain follow-up data, and the representativeness of the sample included cannot be determined


Assuntos
Humanos , Deficiência de alfa 1-Antitripsina/epidemiologia , Registros de Doenças/estatística & dados numéricos , Bases de Dados como Assunto , Sistemas de Informação/organização & administração , Armazenamento e Recuperação da Informação/métodos , Espanha
13.
Arch Bronconeumol ; 53(1): 13-18, 2017 Jan.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-27323654

RESUMO

INTRODUCTION AND OBJECTIVE: REDAAT, the Spanish Registry of Patients with Alpha-1 Antitrypsin Deficiency, was set up in order to improve knowledge of this disease. This study is an evaluation of the registry and an analysis of its patient population. METHODS: The registry has a database hosted on the website www.redaat.es. It collects clinical and functional data on patients with PiSZ, ZZ phenotypes and other rare variants. RESULTS: Thanks to the collaboration of 124 physicians, the registry currently contains information on 511 individuals from 103 healthcare centers. Of these 511, 348 (74.2%) are Pi*ZZ homozygotes, and 100 (19.5%) are Pi*SZ heterozygotes. More cases are seen in tertiary level hospitals. A total of 81% of the cases have respiratory disease, and a lower proportion of AATD cases were detected by family screening or liver disease. Follow-up data are available for 45% of the cases, and 35% received alpha-1 antitripsin replacement therapy. CONCLUSIONS: The REDAAT registry is a useful tool for obtaining quality information about this minority disease in routine clinical practice conditions, although it is difficult to obtain follow-up data, and the representativeness of the sample included cannot be determined.


Assuntos
Sistema de Registros , Deficiência de alfa 1-Antitripsina/epidemiologia , Adulto , Idoso , Bases de Dados Factuais , Terapia de Reposição de Enzimas , Feminino , Genótipo , Geografia Médica , Humanos , Masculino , Pessoa de Meia-Idade , Espanha/epidemiologia , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/terapia
14.
Int J Mol Sci ; 17(6)2016 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-27275819

RESUMO

Leukemic stem cells (LSCs) are defined as cells that possess the ability to self-renew and give rise to the differentiated cancer cells that comprise the tumor. These LSCs seem to show chemo-resistance and radio-resistance leading to the failure of conventional cancer therapies. Current therapies are directed at the fast growing tumor mass leaving the LSC fraction untouched. Eliminating LSCs, the root of cancer origin and recurrence, is considered to be a hopeful approach to improve survival or even to cure cancer patients. In order to achieve this, the characterization of LSCs is a prerequisite in order to develop LSC-based therapies to eliminate them. Here we review if vitamin D analogues may allow an avenue to target the LSCs.


Assuntos
Leucemia/tratamento farmacológico , Leucemia/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia/genética , Terapia de Alvo Molecular , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados
15.
Cancer Discov ; 5(12): 1328-43, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26408659

RESUMO

UNLABELLED: Earlier in the past century, infections were regarded as the most likely cause of childhood B-cell precursor acute lymphoblastic leukemia (pB-ALL). However, there is a lack of relevant biologic evidence supporting this hypothesis. We present in vivo genetic evidence mechanistically connecting inherited susceptibility to pB-ALL and postnatal infections by showing that pB-ALL was initiated in Pax5 heterozygous mice only when they were exposed to common pathogens. Strikingly, these murine pB-ALLs closely resemble the human disease. Tumor exome sequencing revealed activating somatic, nonsynonymous mutations of Jak3 as a second hit. Transplantation experiments and deep sequencing suggest that inactivating mutations in Pax5 promote leukemogenesis by creating an aberrant progenitor compartment that is susceptible to malignant transformation through accumulation of secondary Jak3 mutations. Thus, treatment of Pax5(+/-) leukemic cells with specific JAK1/3 inhibitors resulted in increased apoptosis. These results uncover the causal role of infection in pB-ALL development. SIGNIFICANCE: These results demonstrate that delayed infection exposure is a causal factor in pB-ALL. Therefore, these findings have critical implications for the understanding of the pathogenesis of leukemia and for the development of novel therapies for this disease.


Assuntos
Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Fator de Transcrição PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/etiologia , Animais , Transplante de Medula Óssea , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Análise por Conglomerados , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Exoma , Feminino , Perfilação da Expressão Gênica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Interleucina-7/metabolismo , Interleucina-7/farmacologia , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/genética , Masculino , Camundongos , Camundongos Knockout , Mutação , Fenótipo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Inibidores de Proteínas Quinases/farmacologia , Receptores de Interleucina-7/genética , Fator de Transcrição STAT5/genética , Integração Viral
16.
Biol Chem ; 395(11): 1315-20, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25205718

RESUMO

Abstract A cancer dogma states that inactivation of oncogene(s) can cause cancer remission, implying that oncogenes are the Achilles' heel of cancers. This current model of cancer has kept oncogenes firmly in focus as therapeutic targets and is in agreement with the fact that in human cancers all cancerous cells, with independence of the cellular heterogeneity existing within the tumour, carry the same oncogenic genetic lesions. However, recent studies of the interactions between an oncogene and its target cell have shown that oncogenes contribute to cancer development via developmental reprogramming of the epigenome within the target cell. These results provide the first evidence that carcinogenesis can be initiated by epigenetic stem cell reprogramming, and uncover a new role for oncogenes in the origin of cancer. Here we analyse these evidences and discuss how this vision offers new avenues for developing novel anti-cancer interventions.


Assuntos
Epigênese Genética , Neoplasias/genética , Oncogenes , Animais , Reprogramação Celular , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Neoplasias/patologia , Neoplasias/terapia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
17.
Nat Commun ; 5: 3904, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24887457

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma and can be separated into two subtypes based upon molecular features with similarities to germinal centre B-cells (GCB-like) or activated B-cells (ABC-like). Here we identify gain of 3q27.2 as being significantly associated with adverse outcome in DLBCL and linked with the ABC-like subtype. This lesion includes the BCL6 oncogene, but does not alter BCL6 transcript levels or target-gene repression. Separately, we identify expression of BCL6 in a subset of human haematopoietic stem/progenitor cells (HSPCs). We therefore hypothesize that BCL6 may act by 'hit-and-run' oncogenesis. We model this hit-and-run mechanism by transiently expressing Bcl6 within murine HSPCs, and find that it causes mature B-cell lymphomas that lack Bcl6 expression and target-gene repression, are transcriptionally similar to post-GCB cells, and show epigenetic changes that are conserved from HSPCs to mature B-cells. Together, these results suggest that BCL6 may function in a 'hit-and-run' role in lymphomagenesis.


Assuntos
Linfócitos B/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Linfoma Difuso de Grandes Células B/genética , Animais , Anticorpos Monoclonais Murinos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ciclofosfamida/uso terapêutico , Variações do Número de Cópias de DNA , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Doxorrubicina/uso terapêutico , Epigênese Genética , Feminino , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Prednisona/uso terapêutico , Prognóstico , Proteínas Proto-Oncogênicas c-bcl-6 , Rituximab , Vincristina/uso terapêutico
18.
Cell Cycle ; 13(11): 1717-26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24675889

RESUMO

In hematopoietic malignancies, oncogenic alterations interfere with cellular differentiation and lead to tumoral development. Identification of the proteins regulating differentiation is essential to understand how they are altered in malignancies. Chronic myelogenous leukemia (CML) is a biphasic disease initiated by an alteration taking place in hematopoietic stem cells. CML progresses to a blast crisis (BC) due to a secondary differentiation block in any of the hematopoietic lineages. However, the molecular mechanisms of CML evolution to T-cell BC remain unclear. Here, we have profiled the changes in DNA methylation patterns in human samples from BC-CML, in order to identify genes whose expression is epigenetically silenced during progression to T-cell lineage-specific BC. We have found that the CpG-island of the ENGRAILED-2 (EN2) gene becomes methylated in this progression. Afterwards, we demonstrate that En2 is expressed during T-cell development in mice and humans. Finally, we further show that genetic deletion of En2 in a CML transgenic mouse model induces a T-cell lineage BC that recapitulates human disease. These results identify En2 as a new regulator of T-cell differentiation whose disruption induces a malignant T-cell fate in CML progression, and validate the strategy used to identify new developmental regulators of hematopoiesis.


Assuntos
Crise Blástica/metabolismo , Diferenciação Celular/imunologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas do Tecido Nervoso/metabolismo , Linfócitos T/imunologia , Animais , Ilhas de CpG/genética , Metilação de DNA/genética , Primers do DNA/genética , Progressão da Doença , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos , Camundongos Transgênicos , Análise em Microsséries , Proteínas do Tecido Nervoso/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Nat Commun ; 4: 1338, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23299888

RESUMO

The human germinal centre-associated lymphoma gene is specifically expressed in germinal centre B-lymphocytes and germinal centre-derived B-cell lymphomas, but its function is largely unknown. Here we demonstrate that human germinal centre-associated lymphoma directly binds to Syk in B cells, increases its kinase activity on B-cell receptor stimulation and leads to enhanced activation of Syk downstream effectors. To further investigate these findings in vivo, human germinal centre-associated lymphoma transgenic mice were generated. Starting from 12 months of age these mice developed polyclonal B-cell lymphoid hyperplasia, hypergammaglobulinemia and systemic reactive amyloid A (AA) amyloidosis, leading to shortened survival. The lymphoid hyperplasia in the human germinal centre-associated lymphoma transgenic mice are likely attributable to enhanced B-cell receptor signalling as shown by increased Syk phosphorylation, ex vivo B-cell proliferation and increased RhoA activation. Overall, our study shows for the first time that the germinal centre protein human germinal centre-associated lymphoma regulates B-cell receptor signalling in B-lymphocytes which, without appropriate control, may lead to B-cell lymphoproliferation.


Assuntos
Amiloidose/patologia , Centro Germinativo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfoma de Células B/enzimologia , Linfoma de Células B/patologia , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Sequência de Aminoácidos , Amiloidose/complicações , Animais , Antígenos Ly/metabolismo , Extratos Celulares , Modelos Animais de Doenças , Ativação Enzimática , Centro Germinativo/patologia , Humanos , Hipergamaglobulinemia/patologia , Hiperplasia , Espaço Intracelular/metabolismo , Estimativa de Kaplan-Meier , Linfoma de Células B/complicações , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos , Dados de Sequência Molecular , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Proteína Amiloide A Sérica/química , Proteína Amiloide A Sérica/metabolismo , Transdução de Sinais , Baço/metabolismo , Baço/patologia , Quinase Syk , Transcriptoma/genética , Proteína rhoA de Ligação ao GTP/metabolismo
20.
Cell Cycle ; 11(20): 3896-900, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22983007

RESUMO

Multiple myeloma (MM) is a serious, mostly incurable human cancer of malignant plasma cells. Chromosomal translocations affecting MAFB are present in a significant percentage of multiple myeloma patients. Genetically engineered Sca1-MafB mice, in which MafB expression is limited to hematopoietic stem/progenitor cells (HS/P-Cs), display the phenotypic features of MM. Contrary to many other types of cancer, it is not yet known if the p53 gene plays any essential role in the pathogenesis of this disease. Here, we show, taking advantage of the Sca1-MafB MM mouse model, that loss of p53 does not rescue the multiple myeloma disease, but instead accelerates its development and exacerbates the MM phenotype. Therefore, the efficiency of the MafB-induced MM reprogramming of normal HS/P-Cs to terminally differentiated malignant plasma cells is enhanced by p53 deficiency, in analogy to what happens in reprogramming to pluripotency. These results raise caution about interfering with p53 function when treating multiple myeloma.


Assuntos
Antígenos Ly/genética , Transformação Celular Neoplásica/genética , Células-Tronco Hematopoéticas/metabolismo , Fator de Transcrição MafB/genética , Proteínas de Membrana/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Plasmócitos/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Antígenos Ly/metabolismo , Deleção de Genes , Células-Tronco Hematopoéticas/patologia , Hemizigoto , Homozigoto , Humanos , Fator de Transcrição MafB/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Mieloma Múltiplo/metabolismo , Fenótipo , Plasmócitos/patologia , Translocação Genética , Proteína Supressora de Tumor p53/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA