Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(13): 8002-8012, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33480905

RESUMO

The excitation functions (reaction cross-section as a function of collision energy) of the F + HD(v = 0, 1; j = 0, 1) benchmark system have been calculated in the 0.01-6 meV collision energy interval using a time-independent hyperspherical quantum dynamics methodology. Special attention has been paid to orbiting resonances, which bring about detailed information on the three-atom interaction during the reactive encounter. The location of the resonances depends on the rovibrational state of the reactants HD(v,j), but is the same for the two product channels HF + D and DF + H, as expected for these resonances that are linked to the van der Waals well at the entrance. The resonance intensities depend both on the entrance and on the exit channels. The peak intensities for the HF + D channel are systematically larger than those for DF + H. Vibrational excitation leads to an increase of the peak intensity by more than an order of magnitude, but rotational excitation has a less drastic effect. It deceases the resonance intensity of the F + HD(v = 1) reaction, but increases somewhat that of F + HD(v = 0). Polarization of the rotational angular momentum with respect to the initial velocity reveals intrinsic directional preferences in the F + HD(v = 0, 1; j = 1) reactions that are manifested in the resonance patterns. The helicities (Ω = 0, Ω = ±1) possible for j = 1 contribute to the resonances, but that from Ω± 1 is, in general, dominant and in some cases exclusive. It corresponds to a preferential alignment of the HD internuclear axis perpendicular to the initial direction of approach and, thus, to side-on collisions. This work also shows that external preparation of the reactants, following the intrinsic preferences, would allow the enhancement or reduction of specific resonance features, and would be of great help for their eventual experimental detection.

2.
Phys Chem Chem Phys ; 21(45): 25389-25396, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31709441

RESUMO

One of the most relevant features of the O(3P) + H2 reaction is that it occurs on two different potential energy surfaces (PESs) of symmetries A' and A'' that correlate reactants and products. The respective saddle points, which correspond to a collinear arrangement, are the same for both PESs, whilst the barrier height rises more abruptly on the 3A' PES than on the 3A'' PES. Accordingly, the reactivity on the 3A'' PES should be always higher than on the 3A' PES. In this work, we present accurate quantum-scattering calculations showing that this is not always the case for rotationless reactants, where dynamical factors near the reaction threshold cause the 3A' PES to dominate at energies around the barrier. Further calculation of cross sections and Λ-doublet populations has allowed us to establish how the reaction mechanism changes from the deep tunneling regime to hyperthermal energies.

3.
Astron Astrophys ; 6292019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31485081

RESUMO

CONTEXT: Dinitriles with a saturated hydrocarbon skeleton and a -C≡N group at each end can have large electric dipole moments. Their formation can be related to highly reactive radicals such as CH2CN, C2N or CN. Thus, these saturated dinitriles are potential candidates to be observed in the ISM. AIMS: Our goal is the investigation of the rotational spectrum of one of the simplest dinitriles N≡C-CH2-CH2-C≡N, succinonitrile, whose actual rotational parameters are not precise enough to allow its detection in the ISM. In addition, the rotational spectra for its vibrational exicted states will be analyzed. METHODS: The rotational spectra of succinonitrile was measured in the frequency range 72-116.5 GHz using a new broadband millimeter-wave spectrometer based on radio astronomy receivers with Fast Fourier Transform backends. The identification of the vibrational excited states of succinonitrile was supported by high-level ab initio calculations on the harmonic and anharmonic force fields. RESULTS: A total of 459 rotational transitions with maximum values of J and Ka quantum numbers 70 and 14, respectively, were measured for the ground vibrational state of succinonitrile. The analysis allowed us to accurately determine the rotational, quartic and sextic centrifugal distortion constants. Up to eleven vibrational excited states, resulting from the four lowest frequency vibrational modes ν 13, ν 12, ν 24 and ν 23 were identified. In addition to the four fundamental modes, we observed overtones together with some combination states. The rotational parameters for the ground state were employed to unsuccessfully search for succinonitrile in the cold and warm molecular clouds Orion KL, Sgr B2(N), B1-b and TMC-1, using the spectral surveys captured by IRAM 30m at 3mm and the Yebes 40m at 1.3cm and 7mm.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31186577

RESUMO

We present a new experimental setup devoted to the study of gas phase molecules and processes using broad band high spectral resolution rotational spectroscopy. A reactor chamber has been equipped with radio receivers similar to those used by radio astronomers to search for molecular emission in space. The whole Q (31.5-50 GHz) and W bands (72-116.5 GHz) are available for rotational spectroscopy observations. The receivers are equipped with 16×2.5 GHz Fast Fourier Transform spectrometers with a spectral resolution of 38.14 kHz allowing the simultaneous observation of the complete Q band and one third of the W band. The whole W band can be observed in three settings in which the Q band is always observed. Species such as CH3CN, OCS, and SO2 are detected, together with many of their isotopologues and vibrationally excited states, in very short observing times. The system permits automatic overnight observations and integration times as long as 2.4×105 seconds have been reached. The chamber is equipped with a radiofrequency source to produce cold plasmas and with four ultraviolet lamps to study photochemical processes. Plasmas of CH4, N2, CH3CN, NH3, O2, and H2, among other species, have been generated and the molecular products easily identified by their rotational spectrum, and mass spectrometry and optical spectroscopy. Finally, the rotational spectrum of the lowest energy conformer of CH3CH2NHCHO (N-Ethylformamide), a molecule previously characterized in microwave rotational spectroscopy, has been measured up to 116.5 GHz allowing the accurate determination of its rotational and distortion constants and its search in space.

5.
Phys Chem Chem Phys ; 21(27): 15177-15186, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31246200

RESUMO

Time-independent, fully converged, quantum dynamical calculations have been performed for the F + HD (v = 0, j = 0) and F + HD (v = 1, j = 0) reactions on an accurate potential energy surface down to collision energies of 0.01 meV. The two isotopic exit channels, HF + D and DF + H, have been investigated. The calculations reproduce satisfactorily the Feshbach resonance structures for collision energies between 10 and 40 meV, previously reported in the literature for the HF + D channel. Contrary to the results of a former literature work, vibrational excitation of HD is found to enhance reactivity in all cases down to the lowest collision energy investigated. Shape-type orbiting resonances are found for collision energies lower than 2 meV. The resonances appear as peaks in the reaction cross sections that are associated to specific values of the total angular momentum, J. In contrast with the Feshbach resonances at higher energies, the orbiting resonance structure, which is caused by the van der Waals well of the entrance channel, is identical for the HF + D and DF + H exit channels. The orbiting resonance peaks for F + HD (v = 0) are very small, but those for F + HD (v = 1) could be observed, in principle, with a combination of Raman pumping and merged beams methods.

6.
Astrophys J ; 861(1)2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30185993

RESUMO

Methyl isocyanate (CH3NCO) was recently found in hot cores and suggested on comet 67P/CG. The incorporation of this molecule into astrochemical networks requires data on its formation and destruction. In this work, ices of pure CH3NCO and of CH3NCO(4-5%)/H2O mixtures deposited at 20 K were irradiated with a UV D2 lamp (120-400 nm) and bombarded by 5 keV electrons to mimic the secondary electrons produced by cosmic rays (CRs). The destruction of CH3NCO was studied using IR spectroscopy. After processing, the νa-NCO band of CH3NCO disappeared and IR bands corresponding to CO, CO2, OCN- and HCN/CN- appeared instead. The products of photon and electron processing were very similar. Destruction cross sections and half-life doses were derived from the measurements. Water ice provides a good shield against UV irradiation (half-life dose of ~ 64 eV molecule-1 for CH3NCO in water-ice), but not so good against high-energy electrons (half-life dose ~ 18 eV molecule-1). It was also found that CH3NCO does not react with H2O over the 20-200 K temperature range. These results indicate that hypothetical CH3NCO in the ices of dense clouds should be stable against UV photons and relatively stable against CRs over the lifetime of a cloud (~ 107 yr), and could sublime in the hot core phase. On the surface of a Kuiper belt object (the original location of comet 67P/CG) the molecule would be swiftly destroyed, both by photons and CRs, but embedded below just 10 µm of water-ice, the molecule could survive for ~ 109 yr.

7.
Plasma Sources Sci Technol ; 27: 035007, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29983483

RESUMO

Interstellar (IS) dust analogs, based on amorphous hydrogenated carbon (a-C:H) were generated by plasma deposition in RF discharges of CH4 + He mixtures. The a-C:H samples were characterized by means of secondary electron microscopy (SEM), infrared (IR) spectroscopy and UV-visible reflectivity. DFT calculations of structure and IR spectra were also carried out. From the experimental data, atomic compositions were estimated. Both IR and reflectivity measurements led to similar high proportions (≈ 50%) of H atoms, but there was a significant discrepancy in the sp2/sp3 hybridization ratios of C atoms (sp2/sp3 = 1.5 from IR and 0.25 from reflectivity). Energetic processing of the samples with 5 keV electrons led to a decay of IR aliphatic bands and to a growth of aromatic bands, which is consistent with a dehydrogenation and graphitization of the samples. The decay of the CH aliphatic stretching band at 3.4 µm upon electron irradiation is relatively slow. Estimates based on the absorbed energy and on models of cosmic ray (CR) flux indicate that CR bombardment is not enough to justify the observed disappearance of this band in dense IS clouds.

8.
Sci Rep ; 8(1): 7250, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740027

RESUMO

The increasing demand for nanostructured materials is mainly motivated by their key role in a wide variety of technologically relevant fields such as biomedicine, green sustainable energy or catalysis. We have succeeded to scale-up a type of gas aggregation source, called a multiple ion cluster source, for the generation of complex, ultra-pure nanoparticles made of different materials. The high production rates achieved (tens of g/day) for this kind of gas aggregation sources, and the inherent ability to control the structure of the nanoparticles in a controlled environment, make this equipment appealing for industrial purposes, a highly coveted aspect since the introduction of this type of sources. Furthermore, our innovative UHV experimental station also includes in-flight manipulation and processing capabilities by annealing, acceleration, or interaction with background gases along with in-situ characterization of the clusters and nanoparticles fabricated. As an example to demonstrate some of the capabilities of this new equipment, herein we present the fabrication of copper nanoparticles and their processing, including the controlled oxidation (from Cu0 to CuO through Cu2O, and their mixtures) at different stages in the machine.

9.
Astron Astrophys ; 6092018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29277841

RESUMO

We present a proof of concept on the coupling of radio astronomical receivers and spectrometers with chemical reactors and the performances of the resulting setup for spectroscopy and chemical simulations in laboratory astrophysics. Several experiments including cold plasma generation and UV photochemistry were performed in a 40 cm long gas cell placed in the beam path of the Aries 40 m radio telescope receivers operating in the 41-49 GHz frequency range interfaced with fast Fourier transform spectrometers providing 2 GHz bandwidth and 38 kHz resolution. The impedance matching of the cell windows has been studied using different materials. The choice of the material and its thickness was critical to obtain a sensitivity identical to that of standard radio astronomical observations. Spectroscopic signals arising from very low partial pressures of CH3OH, CH3CH2OH, HCOOH, OCS, CS, SO2 (<10-3 mbar) were detected in a few seconds. Fast data acquisition was achieved allowing for kinetic measurements in fragmentation experiments using electron impact or UV irradiation. Time evolution of chemical reactions involving OCS, O2 and CS2 was also observed demonstrating that reactive species, such as CS, can be maintained with high abundance in the gas phase during these experiments.

10.
Mon Not R Astron Soc ; 470(4): 4222-4230, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29861511

RESUMO

Methyl isocyanate has been recently detected in comet 67P/ Churyumov-Gerasimenko (67P/CG) and in the interstellar medium. New physicochemical studies on this species are now necessary as tools for subsequent studies in astrophysics. In this work, infrared spectra of solid CH3NCO have been obtained at temperatures of relevance for astronomical environments. The spectra are dominated by a strong, characteristic multiplet feature at 2350-2250 cm-1, which can be attributed to the antisymmetric stretching of the NCO group. A phase transition from amorphous to crystalline methyl isocyanate is observed at ~ 90 K. The band strengths for the absorptions of CH3NCO in ice at 20 K have been measured. Deuterated methyl isocyanate is used to help with the spectral assignment. No X-ray structure has been reported for crystalline CH3NCO. Here we advance a tentative theoretical structure, based on Density Functional Theory (DFT) calculations, derived taking as a starting point the crystal of isocyanic acid. A harmonic theoretical spectrum is calculated then for the proposed structure, and compared with the experimental data. A mixed ice of H2O and CH3NCO was formed by simultaneous deposition of water and methyl isocyanate at 20 K. The absence of new spectral features indicates that methyl isocyanate and water do not react appreciably at 20 K, but form a stable mixture. The high CH3NCO/H2O ratio reported for comet 67P/CG, and the characteristic structure of the 2350-2250 cm-1 band, make of it a very good candidate for future astronomical searches.

11.
Phys Chem Chem Phys ; 18(19): 13530-7, 2016 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-27138743

RESUMO

The dynamics of the D + MuH(v = 1) reaction has been investigated using time-independent quantum mechanical calculations. The total reaction cross sections and rate coefficients have been calculated for the two exit channels of the reaction leading, respectively, to DMu + H and DH + Mu. Over the 100-1000 K temperature range investigated the rate coefficients for the DMu + H channel are of the order of 10(-10) cm(3) s(-1) and those for the DH + Mu channel vary between 1 × 10(-12) and 8 × 10(-11) cm(3) s(-1). These results point to a virtually barrierless reaction for the DMu + H channel and to the presence of a comparatively small barrier for the DH + Mu channel and are consistent with the profiles of their respective collinear vibrationally adiabatic potentials (VAPs). The effective barrier in the VAP of the DH + Mu channel is located in the reactant valley and, consequently, translation is found to be more efficient than vibration for the promotion of the reaction over a large energy interval in the post threshold region. Below this barrier, the DH + Mu channel can be accessible through an indirect mechanism implying crossing from the DMu + H pathway. The most salient feature found in the present study is revealed in the total reaction cross section for the DMu + H channel, which shows a sharp resonance caused by the presence of a deep well in the vibrationally adiabatic potential. This well has a dynamical origin, reminiscent of that found recently in the vibrationally bonded BrMuBr complex [Fleming, et al., Angew. Chem., Int. Ed., 2014, 53, 1], and is due to the stabilizing effect of the light Mu atom oscillating between the heavier H and D isotopes and to the bond softening associated with vibrational excitation of MuH.

12.
Astrophys J Lett ; 833(2)2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-28261442

RESUMO

The chloroniumyl cation, HCl+, has been recently identified in space from Herschel's spectra. A joint analysis of extensive vis-UV spectroscopy emission data together with a few high-resolution and high-accuracy millimiter-wave data provided the necessary rest frequencies to support the astronomical identification. Nevertheless, the analysis did not include any infrared (IR) vibration-rotation data. Furthermore, with the end of the Herschel mission, infrared observations from the ground may be one of the few available means to further study this ion in space. In this work, we provide a set of accurate rovibrational transition wavenumbers as well as a new and improved global fit of vis-UV, IR and millimiter-wave spectroscopy laboratory data, that will aid in future studies of this molecule.

13.
Plasma Sources Sci Technol ; 24(1)2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26702195

RESUMO

The chemistry of low pressure H2 + O2 discharges with different mixture ratios has been studied in a hollow cathode DC reactor. Neutral and positive ion distributions have been measured by mass spectrometry, and Langmuir probes have been used to provide charge densities and electron temperatures. A simple zero order kinetic model including neutral species and positive and negative ions, which takes into account gas-phase and heterogeneous chemistry, has been used to reproduce the global composition of the plasmas over the whole range of mixtures experimentally studied, and allows for the identification of the main physicochemical mechanisms that may explain the experimental results. To our knowledge, no combined experimental and modelling studies of the heavy species kinetics of low pressure H2 + O2 plasmas including ions has been reported before. As expected, apart from the precursors, H2O is detected in considerable amounts. The model also predicts appreciable concentrations of H and O atoms and the OH radical. The relevance of the metastable species O(1D) and O2(a1Δg) is analysed. Concerning the charged species, positive ion distributions are dominated by H3O+ for a wide range of intermediate mixtures, while H3+ and O2+ are the major ions for the higher and lower H2/O2 ratios, respectively. The mixed ions OH+, H2O+ and HO2+ are also observed in small amounts. Negative ions are shown to have a limited relevance in the global chemistry; their main contribution is the reduction of the electron density available for electron impact processes.

14.
J Phys Chem A ; 119(50): 12245-54, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26305719

RESUMO

We have analyzed the influence of the rotational excitation on the H + D2(v = 0, j) reaction through quantum mechanical (QM) and quasiclassical trajectories (QCT) calculations at a wide range of total energies. The agreement between both types of calculations is excellent. We have found that the rotational excitation largely increases the reactivity at large values of the total energy. Such an increase cannot be attributed to a stereodynamical effect but to the existence of recrossing trajectories that become reactive as the target molecule gets rotationally excited. At low total energies, however, recrossing is not significant and the reactivity evolution is dominated by changes in the collision energy; the reactivity decreases with the collision energy as it shrinks the acceptance cone. When state-to-state results are considered, rotational excitation leads to cold product's rovibrational distributions, so that most of the energy is released as recoil energy.

15.
Phys Chem Chem Phys ; 16(31): 16694-700, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25000136

RESUMO

The symmetric stretching vibration (breathing mode) of methane is forbidden in the infrared spectra of gases. However, it has been observed in the spectra of low-pressure ice mixtures of methane and water, studied as models for astronomical ices. We investigate the possible origin of the activation of this mode by means of solid state calculations of amorphous water (ASW) samples into which methane molecules are introduced. Activation is predicted either by the interaction of the CH4 and H2O molecules in pore walls or via a strong mode coupling that takes place between the breathing mode of CH4 and the O-H stretching mode of H2O when both vibrations coincide in frequency. These two mechanisms would be favored for low-density or high density ASW, respectively. A possible experimental observation of this activation in compact ASW is discussed.

16.
Phys Chem Chem Phys ; 16(21): 9808-18, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24366414

RESUMO

The dynamics of the asymmetric D + MuH (Mu = Muonium) reaction leading to Mu exchange, DMu + H, and H abstraction, DH + Mu, channels has been investigated using time-independent quantum mechanical (QM) calculations. Reaction probabilities, cross sections, cumulative reaction probabilities, and rate coefficients were determined for the two exit channels of the reaction. Quasiclassical trajectory (QCT) calculations were also performed in order to check the reliability of the method for this reaction and to discern the genuine quantum effects. Overall, the Mu exchange channel exhibits more structured reaction probabilities and cross sections with much larger rate coefficients than the H abstraction counterpart. Over the 100-1000 K temperature interval considered in this study, the QM rate coefficients for the Mu exchange vary between ≈5 × 10(-15) and 2 × 10(-11) cm(3) s(-1) and those for the generation of DH + Mu between 2 × 10(-18) and 3.5 × 10(-12) cm(3) s(-1). In common with the rest of the isotopologues of the H + H2 system, the height of the respective barriers in the collinear (symmetric stretch) vibrationally adiabatic potential energy curves matches the classical total energy threshold very accurately. Indeed, the lower and narrower vibrationally adiabatic collinear barrier as compared with that for the DH + Mu formation determines the preponderance of the DMu + H channel. Comparison of QM and QCT results and their analysis show that tunneling accounts for the reactivity at energies below the height of these barriers and that its effect on the rate coefficients becomes appreciable below 300 K. As expected, with growing temperature the contribution of tunneling to the global reactivity decreases markedly, but the rate coefficients are still much higher for the Mu exchange channel due to the effect of MuH rotational excitation that boosts the formation of DMu while diminishing the H abstraction channel that leads to DH formation. The analysis of the thermal cumulative reaction probabilities of the two channels indicates that at the lowest energies/temperatures the reaction into the DH + Mu channel takes place via'leakage' from collisions proceeding along the DMu + H reaction path.

17.
J Phys Chem A ; 117(39): 9564-73, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23360125

RESUMO

Cyanate and bicarbonate are two ions that play active roles in many fields of physics and chemistry, including biological sciences and astrochemistry. We present here a comprehensive study of these species covering a range of phases and methodologies. We have performed theoretical calculations on the isolated ions and their hydrates with one to four water molecules, and in clusters with 15 water molecules. The predicted infrared spectra are compared with observed spectra from experiments where liquid droplets of their solutions are frozen at 14 K on a substrate, to mimic some astrophysical conditions. Crystals of cyanate and bicarbonate sodium and potassium salts are also studied experimental and theoretically. As well, the spontaneous decomposition of cyanate into bicarbonate is documented from the spectra of an aged solution. Finally, the possible astrophysical observation of bicarbonate in water-containing particles is discussed.

18.
Phys Chem Chem Phys ; 14(42): 14596-604, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23019575

RESUMO

Quantum mechanical (QM) and quasiclassical trajectory (QCT) calculations have been carried out for the exchange reactions of D and Mu (Mu = muonium) with hydrogen molecules in their ground and first vibrational states. In all the cases considered, the QM rate coefficients, k(T), are in very good agreement with the available experimental results. In particular, QM calculations on the most accurate potential energy surfaces (PESs) predict a rate coefficient for the Mu + H(2) (ν = 1) reaction which is very close to the preliminary estimate of its experimental value at 300 K. In contrast to the D + H(2) (ν = 0,1) and the Mu + H(2) (ν = 0) reactions, the QCT calculations for Mu + H(2) (ν = 1) predict a much smaller k(T) than that obtained with the accurate QM method. This behaviour is indicative of tunneling. The QM reaction probabilities and total reactive cross sections show that the total energy thresholds for the reactions of Mu with H(2) in ν = 0 and ν = 1 are very similar, whereas for the corresponding reaction with D the ν = 0 total energy threshold is about 0.3 eV lower than that for ν = 1. The results just mentioned can be explained by considering the vibrational adiabatic potentials along the minimum energy path. The threshold for the reaction of Mu with H(2) in both ν = 0 and ν = 1 states is the same and is given by the height of the ground vibrational adiabatic collinear potential, whereas for the D + H(2) reaction the adiabaticity is preserved and the threshold for the reaction in ν = 1 is very close to the height of the ν = 1 adiabatic collinear barrier. For Mu + H(2) (ν = 1) the reaction takes place by crossing from the ν = 1 to the ν = 0 adiabat, since the exit channel leading to MuH (ν = 1) is not energetically accessible. At the lowest possible energies, the non-adiabatic vibrational crossing implies a strong tunneling effect through the ν = 1 adiabatic barrier. Absence of tunneling in the classical calculations results in a threshold that coincides with the height of the ν = 1 adiabatic barrier. Most interestingly, the expected tunneling effect in the reaction of Mu with hydrogen molecules occurs for H(2) (ν = 1) but not for H(2) (ν = 0) where zero-point-energy effects clearly dominate.

19.
Phys Chem Chem Phys ; 14(10): 3346-59, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22297467

RESUMO

An extensive set of experimental measurements on the dynamics of the H(+) + D(2) and D(+) + H(2) ion-molecule reactions is compared with the results of quantum mechanical (QM), quasiclassical trajectory (QCT), and statistical quasiclassical trajectory (SQCT) calculations. The dynamical observables considered include specific rate coefficients as a function of the translational energy, E(T), thermal rate coefficients in the 100-500 K temperature range. In addition, kinetic energy spectra (KES) of the D(+) ions reactively scattered in H(+) + D(2) collisions are also presented for translational energies between 0.4 eV and 2.0 eV. For the two reactions, the best global agreement between experiment and theory over the whole energy range corresponds to the QCT calculations using a gaussian binning (GB) procedure, which gives more weight to trajectories whose product vibrational action is closer to the actual integer QM values. The QM calculations also perform well, although somewhat worse over the more limited range of translational energies where they are available (E(T) < 0.6 eV and E(T) < 0.2 eV for the H(+) + D(2) and D(+) + H(2) reactions, respectively). The worst agreement is obtained with the SQCT method, which is only adequate for low translational energies. The comparison between theory and experiment also suggests that the most reliable rate coefficient measurements are those obtained with the merged beams technique. It is worth noting that none of the theoretical approaches can account satisfactorily for the experimental specific rate coefficients of H(+) + D(2) for E(T)≤ 0.2 eV although there is a considerable scatter in the existing measurements. On the whole, the best agreement with the experimental laboratory KES is obtained with the simulations carried out using the state resolved differential cross sections (DCSs) calculated with the QCT-GB method, which seems to account for most of the observed features. In contrast, the simulations with the SQCT data predict kinetic energy spectra (KES) considerably cooler than those experimentally determined.

20.
J Phys Chem A ; 115(1): 70-5, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21142108

RESUMO

The formate anion HCOO(-) is present in a multitude of systems of relevance, and it is characterized by its plasticity, adopting several different structures. This work provides a theoretical study of the ion focused on two of these structures, a crystal and an isolated species. Crystals of sodium formate and ammonium formate are studied using CASTEP, a solid-oriented computing package. Individual molecules of the same systems and of the formate and ammonium ions are also studied, using the Gaussian code at the MP2/aug-cc-pvTZ level. All theoretical calculations are contrasted by comparison to observed infrared spectra, recorded by using different techniques. In addition, a topological analysis of the bonding properties of the isolated molecules is presented.


Assuntos
Formiatos/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...