Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Chim Acta ; 493: 63-72, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30776361

RESUMO

Endometriosis is defined as the presence of ectopic endometrial tissue outside of the uterine cavity, most commonly in the ovaries and peritoneum. It is a complex disease that is influenced by multiple factors. It is also a common gynecological disorder and affects approximately 10-15% of all women of reproductive age. Recent molecular and pathological studies indicate that endometriosis may serve as a precursor of ovarian cancer (endometriosis-associated ovarian cancer, EAOC), particularly endometrioid and clear cell ovarian cancers. Although histological and epidemiological studies have demonstrated that endometriosis has a malignant potential, the molecular mechanism that underlies the malignant transformation of endometriosis is still controversial, and the precise mechanism of carcinogenesis must be fully elucidated. Currently, the development and improvement of a new sequencing technology, next-generation sequencing (NGS), has been increasingly relevant in cancer genomics research. Recently, NGS has also been utilized in clinical oncology to advance the personalized treatment of cancer. In addition, the sensitivity, speed, and cost make NGS a highly attractive platform compared to other sequencing modalities. For this reason, NGS may lead to the identification of driver mutations and underlying pathways associated with EAOC. Here, we present an overview of the molecular pathways that have led to the current opinions on the relationship between endometriosis and ovarian cancer.


Assuntos
Endometriose/patologia , Neoplasias Ovarianas/patologia , Feminino , Humanos
2.
Cell Death Dis ; 5: e1142, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24675460

RESUMO

While TRAIL is a promising anticancer agent due to its ability to selectively induce apoptosis in neoplastic cells, many tumors, including pancreatic ductal adenocarcinoma (PDA), display intrinsic resistance, highlighting the need for TRAIL-sensitizing agents. Here we report that TRAIL-induced apoptosis in PDA cell lines is enhanced by pharmacological inhibition of glycogen synthase kinase-3 (GSK-3) or by shRNA-mediated depletion of either GSK-3α or GSK-3ß. In contrast, depletion of GSK-3ß, but not GSK-3α, sensitized PDA cell lines to TNFα-induced cell death. Further experiments demonstrated that TNFα-stimulated IκBα phosphorylation and degradation as well as p65 nuclear translocation were normal in GSK-3ß-deficient MEFs. Nonetheless, inhibition of GSK-3ß function in MEFs or PDA cell lines impaired the expression of the NF-κB target genes Bcl-xL and cIAP2, but not IκBα. Significantly, the expression of Bcl-xL and cIAP2 could be reestablished by expression of GSK-3ß targeted to the nucleus but not GSK-3ß targeted to the cytoplasm, suggesting that GSK-3ß regulates NF-κB function within the nucleus. Consistent with this notion, chromatin immunoprecipitation demonstrated that GSK-3 inhibition resulted in either decreased p65 binding to the promoter of BIR3, which encodes cIAP2, or increased p50 binding as well as recruitment of SIRT1 and HDAC3 to the promoter of BCL2L1, which encodes Bcl-xL. Importantly, depletion of Bcl-xL but not cIAP2, mimicked the sensitizing effect of GSK-3 inhibition on TRAIL-induced apoptosis, whereas Bcl-xL overexpression ameliorated the sensitization by GSK-3 inhibition. These results not only suggest that GSK-3ß overexpression and nuclear localization contribute to TNFα and TRAIL resistance via anti-apoptotic NF-κB genes such as Bcl-xL, but also provide a rationale for further exploration of GSK-3 inhibitors combined with TRAIL for the treatment of PDA.


Assuntos
Apoptose/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , NF-kappa B/metabolismo , Neoplasias Pancreáticas/patologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Apoptose/genética , Proteína 3 com Repetições IAP de Baculovírus , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Humanos , Proteínas I-kappa B/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Isoenzimas/metabolismo , Camundongos , Inibidor de NF-kappaB alfa , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Ubiquitina-Proteína Ligases , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteína bcl-X/metabolismo
3.
Oncogenesis ; 2: e61, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23917223

RESUMO

SOX2 (Sex-determining region Y (SRY)-Box2) has important functions during embryonic development and is involved in cancer stem cell (CSC) maintenance, in which it impairs cell growth and tumorigenicity. However, the function of SOX2 in pancreatic cancer cells is unclear. The objective of this study was to analyze SOX2 expression in human pancreatic tumors and determine the role of SOX2 in pancreatic cancer cells regulating CSC properties. In this report, we show that SOX2 is not expressed in normal pancreatic acinar or ductal cells. However, ectopic expression of SOX2 is observed in 19.3% of human pancreatic tumors. SOX2 knockdown in pancreatic cancer cells results in cell growth inhibition via cell cycle arrest associated with p21(Cip1) and p27(Kip1) induction, whereas SOX2 overexpression promotes S-phase entry and cell proliferation associated with cyclin D3 induction. SOX2 expression is associated with increased levels of the pancreatic CSC markers ALDH1, ESA and CD44. Importantly, we show that SOX2 is enriched in the ESA(+)/CD44(+) CSC population from two different patient samples. Moreover, we show that SOX2 directly binds to the Snail, Slug and Twist promoters, leading to a loss of E-Cadherin and ZO-1 expression. Taken together, our findings show that SOX2 is aberrantly expressed in pancreatic cancer and contributes to cell proliferation and stemness/dedifferentiation through the regulation of a set of genes controlling G1/S transition and epithelial-to-mesenchymal transition (EMT) phenotype, suggesting that targeting SOX2-positive cancer cells could be a promising therapeutic strategy.

5.
Cell Death Dis ; 1: e109, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21368881

RESUMO

The question of how neural progenitor cells maintain its self-renewal throughout life is a fundamental problem in cell biology with implications in cancer, aging and neurodegenerative diseases. In this work, we have analyzed the p73 function in embryonic neural progenitor cell biology using the neurosphere (NS)-assay and showed that p73-loss has a significant role in the maintenance of neurosphere-forming cells in the embryonic brain. A comparative study of NS from Trp73-/-, p53KO, p53KO;Trp73-/- and their wild-type counterparts demonstrated that p73 deficiency results in two independent, but related, phenotypes: a smaller NS size (related to the proliferation and survival of the neural-progenitors) and a decreased capacity to form NS (self-renewal). The former seems to be the result of p53 compensatory activity, whereas the latter is p53 independent. We also demonstrate that p73 deficiency increases the population of neuronal progenitors ready to differentiate into neurons at the expense of depleting the pool of undifferentiated neurosphere-forming cells. Analysis of the neurogenic niches demonstrated that p73-loss depletes the number of neural-progenitor cells, rendering deficient niches in the adult mice. Altogether, our study identifies TP73 as a positive regulator of self-renewal with a role in the maintenance of the neurogenic capacity. Thus, proposing p73 as an important player in the development of neurodegenerative diseases and a potential therapeutic target.


Assuntos
Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Células-Tronco Neurais/citologia , Neurônios/citologia , Proteínas Nucleares/genética , Proteína Supressora de Tumor p53/fisiologia , Proteínas Supressoras de Tumor/genética , Animais , Proliferação de Células , Genótipo , Camundongos , Doenças Neurodegenerativas/genética , Neurônios/metabolismo , Proteína Tumoral p73
6.
Cell Death Differ ; 14(2): 254-65, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16645632

RESUMO

The p73 gene is capable of inducing cell cycle arrest, apoptosis, senescence, differentiation and to cooperate with oncogenic Ras in cellular transformation. Ras can be considered as a branch point in signal transduction, where diverse extracellular stimuli converge. The intensity of the mitogen-activated protein kinase (MAPK) cascade activation influences the cellular response to Ras. Despite the fundamental role of p53 in Ras-induced growth arrest and senescence, it remains unclear how the Ras/MEK/ERK pathway induces growth arrest in the absence of p53. We report here that oncogenic Ras stabilizes p73 resulting in p73 accumulation and enhancement of its activity. p73, in turn, induces a sustained activation of the MAP kinase cascade synergizing with oncogenic Ras. We also found that inhibition of p73 function modifies the cellular outcome to Ras activation inhibiting Ras-dependent differentiation. Here, we show for the first time that there is a signaling loop between Ras-dependent MAPK cascade activation and p73 function.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Genes ras , Sistema de Sinalização das MAP Quinases , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Diferenciação Celular , Transformação Celular Neoplásica , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HCT116 , Humanos , Proteína Oncogênica p21(ras)/metabolismo , Ligação Proteica , Ratos , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...