Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 258: 113676, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31818614

RESUMO

CH4 oxidation in landfill cover soils plays a significant role in mitigating CH4 release to the atmosphere. Oxygen availability and the presence of co-contaminants are potentially important factors affecting CH4 oxidation rate and the fate of CH4-derived carbon. In this study, microbial populations that oxidize CH4 and the subsequent conversion of CH4-derived carbon into CO2, soil organic C and biomass C were investigated in landfill cover soils at two O2 tensions, i.e., O2 concentrations of 21% ("sufficient") and 2.5% ("limited") with and without toluene. CH4-derived carbon was primarily converted into CO2 and soil organic C in the landfill cover soils, accounting for more than 80% of CH4 oxidized. Under the O2-sufficient condition, 52.9%-59.6% of CH4-derived carbon was converted into CO2 (CECO2-C), and 29.1%-39.3% was converted into soil organic C (CEorganic-C). A higher CEorganic-C and lower CECO2-C occurred in the O2-limited environment, relative to the O2-sufficient condition. With the addition of toluene, the carbon conversion efficiency of CH4 into biomass C and organic C increased slightly, especially in the O2-limited environment. A more complex microbial network was involved in CH4 assimilation in the O2-limited environment than under the O2-sufficient condition. DNA-based stable isotope probing of the community with 13CH4 revealed that Methylocaldum and Methylosarcina had a higher relative growth rate than other type I methanotrophs in the landfill cover soils, especially at the low O2 concentration, while Methylosinus was more abundant in the treatment with both the high O2 concentration and toluene. These results indicated that O2-limited environments could prompt more CH4-derived carbon to be deposited into soils in the form of biomass C and organic C, thereby enhancing the contribution of CH4-derived carbon to soil community biomass and functionality of landfill cover soils (i.e. reduction of CO2 emission).


Assuntos
Metano/química , Oxigênio/química , Microbiologia do Solo , Instalações de Eliminação de Resíduos , Carbono , Oxirredução , Solo
2.
Sci Total Environ ; 607-608: 23-31, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28686892

RESUMO

Anaerobic oxidation of methane (AOM) is a biological process that plays an important role in reducing the CH4 emissions from a wide range of ecosystems. Arctic and sub-Arctic lakes are recognized as significant contributors to global methane (CH4) emission, since CH4 production is increasing as permafrost thaws and provides fuels for methanogenesis. Methanotrophy, including AOM, is critical to reducing CH4 emissions. The identity, activity, and metabolic processes of anaerobic methane oxidizers are poorly understood, yet this information is critical to understanding CH4 cycling and ultimately to predicting future CH4 emissions. This study sought to identify the microorganisms involved in AOM in sub-Arctic lake sediments using DNA- and phospholipid-fatty acid (PLFA)- based stable isotope probing. Results indicated that aerobic methanotrophs belonging to the genus Methylobacter assimilate carbon from CH4, either directly or indirectly. Other organisms that were found, in minor proportions, to assimilate CH4-derived carbon were methylotrophs and iron reducers, which might indicate the flow of CH4-derived carbon from anaerobic methanotrophs into the broader microbial community. While various other taxa have been reported in the literature to anaerobically oxidize methane in various environments (e.g. ANME-type archaea and Methylomirabilis Oxyfera), this report directly suggest that Methylobacter can perform this function, expanding our understanding of CH4 oxidation in anaerobic lake sediments.


Assuntos
Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Metano/metabolismo , Anaerobiose , Regiões Árticas , Oxirredução
3.
J Biomol Tech ; 28(1): 31-39, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28337070

RESUMO

The Extreme Microbiome Project (XMP) is a project launched by the Association of Biomolecular Resource Facilities Metagenomics Research Group (ABRF MGRG) that focuses on whole genome shotgun sequencing of extreme and unique environments using a wide variety of biomolecular techniques. The goals are multifaceted, including development and refinement of new techniques for the following: 1) the detection and characterization of novel microbes, 2) the evaluation of nucleic acid techniques for extremophilic samples, and 3) the identification and implementation of the appropriate bioinformatics pipelines. Here, we highlight the different ongoing projects that we have been working on, as well as details on the various methods we use to characterize the microbiome and metagenome of these complex samples. In particular, we present data of a novel multienzyme extraction protocol that we developed, called Polyzyme or MetaPolyZyme. Presently, the XMP is characterizing sample sites around the world with the intent of discovering new species, genes, and gene clusters. Once a project site is complete, the resulting data will be publically available. Sites include Lake Hillier in Western Australia, the "Door to Hell" crater in Turkmenistan, deep ocean brine lakes of the Gulf of Mexico, deep ocean sediments from Greenland, permafrost tunnels in Alaska, ancient microbial biofilms from Antarctica, Blue Lagoon Iceland, Ethiopian toxic hot springs, and the acidic hypersaline ponds in Western Australia.


Assuntos
Microbiologia Ambiental , Microbiota/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Ambientes Extremos , Metagenoma , Tipagem Molecular/normas , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , Padrões de Referência , Análise de Sequência de DNA/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...