Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202405572, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702972

RESUMO

Sulfurous acid (H2SO3) is known to be thermodynamically instable decomposing into SO2 and H2O. All attempts to detect this elusive acid in solution failed up to now. Reported H2SO3 formation from an experiment carried out in a mass spectrometer as well as results from theoretical calculations, however, indicated a possible kinetic stability in the gas phase. Here, it is shown experimentally that H2SO3 is formed in the OH radical-initiated gas-phase oxidation of methanesulfinic acid (CH3S(O)OH) at 295 ± 0.5 K and 1 bar of air with a molar yield of [[EQUATION]] %. Further main products are SO2, SO3 and methanesulfonic acid. CH3S(O)OH represents an important intermediate product of dimethyl sulfide oxidation in the atmosphere. Global modeling predicts an annual H2SO3 production of ∼8 million metric tons from the OH + CH3S(O)OH reaction. The investigated H2SO3 depletion in the presence of water vapor results in k(H2O + H2SO3) < 3 × 10-18 cm3 molecule-1 s-1, which indicates a lifetime of at least one second for atmospheric humidity. This work provides experimental evidence that H2SO3, once formed in the gas phase, is kinetically stable enough to allow its characterization and subsequent reactions.

2.
Environ Res ; 252(Pt 3): 119008, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663670

RESUMO

Although desert dust promotes morbidity and mortality, it is exempt from regulations. Its health effects have been related to its inflammatory properties, which can vary between source regions. It remains unclear which constituents cause this variability. Moreover, whether long-range transported desert dust potentiates the hazardousness of local particulate matter (PM) is still unresolved. We aimed to assess the influence of long-range transported desert dust on the inflammatory potency of PM2.5 and PM10 collected in Cape Verde and to examine associated constituents. During a reference period and two Saharan dust events, 63 PM2.5 and PM10 samples were collected at four sampling stations. The content of water-soluble ions, elements, and organic and elemental carbon was measured in all samples and endotoxins in PM10 samples. The PM-induced release of inflammatory cytokines from differentiated THP-1 macrophages was evaluated. The association of interleukin (IL)-1ß release with PM composition was assessed using principal component (PC) regressions. PM2.5 from both dust events and PM10 from one event caused higher IL-1ß release than PM from the reference period. PC regressions indicated an inverse relation of IL-1ß release with sea spray ions in both size fractions and organic and elemental carbon in PM2.5. The PC with the higher regression coefficient suggested that iron and manganese may contribute to PM2.5-induced IL-1ß release. Only during the reference period, endotoxin content strongly differed between sampling stations and correlated with inflammatory potency. Our results demonstrate that long-range transported desert dust amplifies the hazardousness of local air pollution and suggest that, in PM2.5, iron and manganese may be important. Our data indicate that endotoxins are contained in local and long-range transported PM10 but only explain the variability in inflammatory potency of local PM10. The increasing inflammatory potency of respirable and inhalable PM from desert dust events warrants regulatory measures and risk mitigation strategies.

3.
Environ Sci Pollut Res Int ; 31(17): 25238-25257, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38468011

RESUMO

Particulate matter (PM) is an important component in the atmosphere, affecting air quality, health, radiation balance, and global climate. To assess regional air quality in the city of Fez, an intensive field campaign was carried out in the autumn of 2019 in the Middle Atlas region of Morocco. Aerosol sampling was performed simultaneously at two urban sites in the city of Fez: (1) Fez University (FU), a sub-urban site, and (2) Fez Parc (FP), an urban site located in the city center of Fez, using PM10 collectors. Various laboratory analyses were carried out, including PM mass, trace metals, inorganic ions, OC/EC, sugar compounds, and PAHs. The results indicate that the PM10 mass (61 ng m-3) was comparable at both sites, with a 37-107 ng m-3 range. Most of the 19 investigated PAHs at the FU site (10.2 ± 6.2 ng m-3) were low-molecular-weight PAHs, while the most abundant PAHs at the FP site (6.9 ± 3.8 ng m-3) were mainly higher-molecular-weight PAHs. A diagnostic ratio analysis at both sites indicated that PAHs originated from fossil fuel combustion and traffic emissions from diesel engines, with Ant/(Ant + Phe) and Flu/(Flu + Pyr) ratios averaging 0.22 and 0.84, respectively. PMF analysis identified traffic emissions as a major source (30%), with secondary inorganic aerosols (20%) and biomass burning (14%). Polar plots highlight the dominance of local anthropogenic activities in PM pollution, with vehicular emissions, industrial activities, and biomass burning. This study shows that local sources and combustion processes significantly contribute to PM10 sources in Morocco, providing insights into air pollution mitigation in North Africa.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Material Particulado/análise , Poluentes Atmosféricos/análise , Marrocos , Açúcares , Efeitos Antropogênicos , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Emissões de Veículos/análise , Estações do Ano , Hidrocarbonetos Policíclicos Aromáticos/análise
4.
Environ Sci Technol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323876

RESUMO

Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved.

5.
Sci Total Environ ; 916: 170303, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38272092

RESUMO

Concentration data derived from 1H NMR analysis of the water-soluble organic compounds from fine aerosol (PM2.5) at three Central European background stations, Kosetice, Frýdlant (both in the Czech Republic), and Melpitz (Germany), were used for detailed source apportionment analysis. Two winter and two summer episodes (year 2021) with higher organic concentrations and similar wind directions were selected for NMR analyses. The concentration profiles of 61 water-soluble organic compounds were determined by NMR Aerosolomics and a principal component analysis (PCA) was performed on this dataset. Based on the PCA results, 23 compounds were selected for positive matrix factorization (PMF) analysis in order to identify dominant aerosol sources at rural background sites in Central Europe. Both the PCA and the subsequent PMF analyses clearly distinguished the characteristics of winter and summer aerosol particles. In summer, four factors were identified from PMF and were associated with biogenic aerosol (61-78 %), background aerosol (9-15 %), industrial biomass combustion (7-13 %), and residential heating (5-13 %). In winter, only 3 factors were identified - industrial biomass combustion (33-49 %), residential heating (37-45 %) and a background aerosol (8-30 %). The main difference was observed in the winter season with a stronger contribution of emissions from industrial biomass burning at the Czech stations Kosetice and Frýdlant (47-49 %) compared to the Melpitz station (33 %). However, in general, there were negligible differences in identified sources between stations in the given seasons, indicating a certain homogeneity in PM2.5 composition within Central Europe at least during the sampling periods.

6.
ACS Environ Au ; 4(1): 12-30, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38250341

RESUMO

Residential wood combustion contributing to airborne particulate matter (PM10) was studied for 1 year at two sites in the village of Melpitz. Significant excess pollution was observed at the Melpitz center compared to that at the TROPOS research station Melpitz reference site, situated only 700 m away. Local concentration increments at the village site for the combustion PM constituents organic carbon, elemental carbon, levoglucosan, and benzo[a]pyrene were determined under appropriate wind directions, and their winter mean values were 0.7 µg m-3, 0.3 µg m-3, 0.1 µg m-3, and 0.4 ng m-3, representing relative increases over the regional background concentration of 24, 70, 61, and 107%, respectively. Yearly, weekly, and diurnal profiles of village increments suggest residential heating as the dominant source of this excess pollution, mainly originating from wood combustion. Receptor modeling using positive matrix factorization quantified 4.5 µg m-3 wood combustion PM at the village site, representing an increment of 1.9 µg m-3 and an increase of ∼75% over the 2.6 µg m-3 regional background wood combustion PM. This increment varied with season, temperature, and boundary layer height and reached daily mean values of 4-6 µg m-3 during unfavorable meteorological conditions. Potential health effects were estimated and resulted in an all-cause mortality from short-term exposure to wood combustion PM of 2.1 cases per 100,000 inhabitants and year for areas with similar wood smoke levels as observed in Melpitz. The excess cancer risk from the concentrations of polycyclic aromatic hydrocarbons was 6.4 per 100,000. For both health metrics, the very local contributions from the village itself were about 40-50%, indicating a strong potential for mitigation through local-scale policies. A compilation of literature data demonstrates wood combustion to represent a major source of PM pollution in Germany, with average winter-time contributions of 10-20%. The present study quantifies the negative impacts of heating with wood in rural residential areas, where the continuous monitoring of air quality is typically lacking. Further regulation of this PM source is warranted in order to protect human health.

7.
Nat Commun ; 14(1): 6139, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783680

RESUMO

The climate effects of atmospheric aerosol particles serving as cloud condensation nuclei (CCN) depend on chemical composition and hygroscopicity, which are highly variable on spatial and temporal scales. Here we present global CCN measurements, covering diverse environments from pristine to highly polluted conditions. We show that the effective aerosol hygroscopicity, κ, can be derived accurately from the fine aerosol mass fractions of organic particulate matter (ϵorg) and inorganic ions (ϵinorg) through a linear combination, κ = ϵorg ⋅ κorg + ϵinorg ⋅ κinorg. In spite of the chemical complexity of organic matter, its hygroscopicity is well captured and represented by a global average value of κorg = 0.12 ± 0.02 with κinorg = 0.63 ± 0.01 as the corresponding value for inorganic ions. By showing that the sensitivity of global climate forcing to changes in κorg and κinorg is small, we constrain a critically important aspect of global climate modelling.

8.
Environ Sci Technol ; 57(43): 16424-16434, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844023

RESUMO

Mitigating ammonia (NH3) emissions is a significant challenge, given its well-recognized role in the troposphere, contributing to secondary particle formation and impacting acid rain. The difficulty arises from the highly uncertain attribution of atmospheric NH3 to specific emission sources, especially when accounting for diverse environments and varying spatial and temporal scales. In this study, we established a refined δ15N fingerprint for eight emission sources, including three previously overlooked sources of potential importance. We applied this approach in a year-long case study conducted in urban and rural sites located only 40 km apart in the Shandong Peninsula, North China Plain. Our findings highlight that although atmospheric NH3 concentrations and seasonal trends exhibited similarities, their isotopic compositions revealed significant distinctions in the primary NH3 sources. In rural areas, although agriculture emerged as the dominant emission source (64.2 ± 19.5%), a previously underestimated household stove source also played a considerably greater role, particularly during cold seasons (36.5 ± 12.5%). In urban areas, industry and traffic (33.5 ± 15.6%) and, surprisingly, sewage treatment (27.7 ± 11.3%) associated with high population density were identified as the major contributors. Given the relatively short lifetime of atmospheric NH3, our findings highlight the significance of the isotope approach in offering a more comprehensive understanding of localized and seasonal influences of NH3 sources compared to emissions inventories. The refined isotopic fingerprint proves to be an effective tool in distinguishing source contributions across spatial and seasonal scales, thereby providing valuable insights for the development of emission mitigation policies aimed at addressing the increasing NH3 burden on the local atmosphere.


Assuntos
Poluentes Atmosféricos , Amônia , Amônia/análise , Estações do Ano , Poluentes Atmosféricos/análise , Monitoramento Ambiental , China
9.
Part Fibre Toxicol ; 20(1): 39, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864207

RESUMO

BACKGROUND: Epidemiological studies have related desert dust events to increased respiratory morbidity and mortality. Although the Sahara is the largest source of desert dust, Saharan dust (SD) has been barely examined in toxicological studies. Here, we aimed to assess the NLRP3 inflammasome-caspase-1-pathway-dependent pro-inflammatory potency of SD in comparison to crystalline silica (DQ12 quartz) in an advanced air-liquid interface (ALI) co-culture model. Therefore, we exposed ALI co-cultures of alveolar epithelial A549 cells and macrophage-like differentiated THP-1 cells to 10, 21, and 31 µg/cm² SD and DQ12 for 24 h using a Vitrocell Cloud system. Additionally, we exposed ALI co-cultures containing caspase (CASP)1-/- and NLRP3-/- THP-1 cells to SD. RESULTS: Characterization of nebulized DQ12 and SD revealed that over 90% of agglomerates of both dusts were smaller than 2.5 µm. Characterization of the ALI co-culture model revealed that it produced surfactant protein C and that THP-1 cells remained viable at the ALI. Moreover, wild type, CASP1-/-, and NLRP3-/- THP-1 cells had comparable levels of the surface receptors cluster of differentiation 14 (CD14), toll-like receptor 2 (TLR2), and TLR4. Exposing ALI co-cultures to non-cytotoxic doses of DQ12 and SD did not induce oxidative stress marker gene expression. SD but not DQ12 upregulated gene expressions of interleukin 1 Beta (IL1B), IL6, and IL8 as well as releases of IL-1ß, IL-6, IL-8, and tumor necrosis factor α (TNFα). Exposing wild type, CASP1-/-, and NLRP3-/- co-cultures to SD induced IL1B gene expression in all co-cultures whereas IL-1ß release was only induced in wild type co-cultures. In CASP1-/- and NLRP3-/- co-cultures, IL-6, IL-8, and TNFα releases were also reduced. CONCLUSIONS: Since surfactants can decrease the toxicity of poorly soluble particles, the higher potency of SD than DQ12 in this surfactant-producing ALI model emphasizes the importance of readily soluble SD components such as microbial compounds. The higher potency of SD than DQ12 also renders SD a potential alternative particulate positive control for studies addressing acute inflammatory effects. The high pro-inflammatory potency depending on NLRP3, CASP-1, and IL-1ß suggests that SD causes acute lung injury which may explain desert dust event-related increased respiratory morbidity and mortality.


Assuntos
Citocinas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Citocinas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Técnicas de Cocultura , Poeira , Fator de Necrose Tumoral alfa , Interleucina-6 , Interleucina-8 , Inflamassomos/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Tensoativos
10.
Sci Total Environ ; 905: 167054, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37714357

RESUMO

The accurate estimation of highly spatiotemporal volatile organic compounds (VOCs) is of great significance to establish advanced early warning systems and regulate air pollution control. However, the estimation of high spatiotemporal VOCs remains incomplete. Here, the space-time extreme gradient boost model (STXGB) was enhanced by integrating spatiotemporal information to obtain the spatial resolution and overall accuracy of VOCs. To this end, meteorological, topographical and pollutant emissions, was input to the STXGB model, and regional hourly 300 m VOCs maps for 2020 in Shanghai were produced. Our results show that the STXGB model achieve good hourly VOCs estimations performance (R2 = 0.73). A further analysis of SHapley Additive exPlanation (SHAP) regression indicate that local interpretations of the STXGB models demonstrate the strong contribution of emissions on mapping VOCs estimations, while acknowledging the important contribution of space and time term. The proposed approach outperforms many traditional machine learning models with a lower computational burden in terms of speed and memory.

11.
Environ Int ; 178: 108120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527587

RESUMO

Much attention has been paid to the world economy and social situations in response to the outbreak of war between Russia and Ukraine in the context of COVID-19. However, much less attention has been paid to the detrimental effect of war on the atmospheric environment. Here, we used an extended deweathered-detrended technique to quantitatively evaluate changes in ambient NO2, O3, and PM2.5 AQI levels arising from emission changes (due to pandemic-driven lockdowns and war-related activities) in European cities. Results show pandemic-induced lockdowns mitigated regional air pollution in Europe, but the war activities led to an average increase of approximately 9.78% in PM2.5 and 10.07% in NO2, along with an average decrease of about 7.93% in O3 levels in cities near the war zones. Moreover, the regional air pollution exacerbated by the war activities has offset the improvements in air quality observed during the COVID-19 pandemic. The potential mechanism analysis show that the increase in atmospheric pollutant emissions driven by the war activities led to the complexity of chemical reactions in the mixed atmospheric system, which posed a huge challenge to the alleviation of air pollution in the region. This study highlights the urgent need for a ceasefire from an environmental perspective.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , COVID-19/epidemiologia , Ucrânia/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Pandemias , Dióxido de Nitrogênio/análise , Monitoramento Ambiental , Controle de Doenças Transmissíveis , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Europa (Continente)/epidemiologia , Cidades
12.
Nat Commun ; 14(1): 4849, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563153

RESUMO

Sulfuric acid represents a fundamental precursor for new nanometre-sized atmospheric aerosol particles. These particles, after subsequent growth, may influence Earth´s radiative forcing directly, or indirectly through affecting the microphysical and radiative properties of clouds. Currently considered formation routes yielding sulfuric acid in the atmosphere are the gas-phase oxidation of SO2 initiated by OH radicals and by Criegee intermediates, the latter being of little relevance. Here we report the observation of immediate sulfuric acid production from the OH reaction of emitted organic reduced-sulfur compounds, which was speculated about in the literature for decades. Key intermediates are the methylsulfonyl radical, CH3SO2, and, even more interestingly, its corresponding peroxy compound, CH3SO2OO. Results of modelling for pristine marine conditions show that oxidation of reduced-sulfur compounds could be responsible for up to ∼50% of formed gas-phase sulfuric acid in these areas. Our findings provide a more complete understanding of the atmospheric reduced-sulfur oxidation.

13.
Proc Natl Acad Sci U S A ; 120(35): e2302048120, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603738

RESUMO

Gaseous nitrous acid (HONO) is a critical source of hydroxyl radicals (OH) in the troposphere. While both direct and secondary sources contribute to atmospheric HONO, direct emissions have traditionally been considered minor contributors. In this study, we developed δ15N and δ18O isotopic fingerprints to identify six direct HONO emission sources and conducted a 1-y case study on the isotopic composition of atmospheric HONO at rural and urban sites. Interestingly, we identified that livestock farming is a previously overlooked direct source of HONO and determined its HONO to ammonia (NH3) emission ratio. Additionally, our results revealed that spatial and temporal variations in atmospheric HONO isotopic composition can be partially attributed to direct emissions. Through a detailed HONO budget analysis incorporating agricultural sources, we found that direct HONO emissions accounted for 39~45% of HONO production in rural areas across different seasons. The findings were further confirmed by chemistry transport model simulations, highlighting the significance of direct HONO emissions and their impact on air quality in the North China Plain. These findings provide compelling evidence that direct HONO emissions play a more substantial role in contributing to atmospheric HONO than previously believed. Moreover, the δ15N and δ18O isotopic fingerprints developed in this study may serve as a valuable tool for further research on the atmospheric chemistry of reactive nitrogen gases.

14.
J Phys Chem A ; 127(31): 6495-6508, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37498295

RESUMO

T-dependent aqueous-phase rate constants were determined for the oxidation of the hydroxy aldehydes, glyceraldehyde, glycolaldehyde, and lactaldehyde, by the hydroxyl radicals (•OH), the sulfate radicals (SO4•-), and the nitrate radicals (NO3•). The obtained Arrhenius expressions for the oxidation by the •OH radical are: k(T,GLYCERALDEHYDE+OH•) = (3.3 ± 0.1) × 1010 × exp((-960 ± 80 K)/T)/L mol-1 s-1, k(T,GLYCOLALDEHYDE+OH•) = (4.3 ± 0.1) × 1011 × exp((-1740 ± 50 K)/T)/L mol-1 s-1, k(T,LACTALDEHYDE+OH•) = (1.6 ± 0.1) × 1011 × exp((-1410 ± 180 K)/T)/L mol-1 s-1; for the SO4•- radical: k(T,GLYCERALDEHYDE+SO4•-) = (4.3 ± 0.1) × 109 × exp((-1400 ± 50 K)/T)/L mol-1 s-1, k(T,GLYCOLALDEHYDE+SO4•-) = (10.3 ± 0.3) × 109 × exp((-1730 ± 190 K)/T)/L mol-1 s-1, k(T,LACTALDEHYDE+SO4•-) = (2.2 ± 0.1) × 109 × exp((-1030 ± 230 K)/T)/L mol-1 s-1; and for the NO3• radical: k(T,GLYCERALDEHYDE+NO3•) = (3.4 ± 0.2) × 1011 × exp((-3470 ± 460 K)/T)/L mol-1 s-1, k(T,GLYCOLALDEHYDE+NO3•) = (7.8 ± 0.2) × 1011 × exp((-3820 ± 240 K)/T)/L mol-1 s-1, k(T,LACTALDEHYDE+NO3•) = (4.3 ± 0.2) × 1010 × exp((-2750 ± 340 K)/T)/L mol-1 s-1, respectively. Targeted simulations of multiphase chemistry reveal that the oxidation by OH radicals in cloud droplets is important under remote and wildfire influenced continental conditions due to enhanced partitioning. There, the modeled average aqueous •OH concentration is 2.6 × 10-14 and 1.8 × 10-14 mol L-1, whereas it is 7.9 × 10-14 and 3.5 × 10-14 mol L-1 under wet particle conditions. During cloud periods, the aqueous-phase reactions by •OH contribute to the oxidation of glycolaldehyde, lactaldehyde, and glyceraldehyde by about 35 and 29%, 3 and 3%, and 47 and 37%, respectively.

15.
J Am Chem Soc ; 145(29): 15652-15657, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37462273

RESUMO

Halogen atoms are important atmospheric oxidants that have unidentified daytime sources from photochemical halide oxidation in sea salt aerosols. Here, we show that the photolysis of nitrate in aqueous chloride solutions generates nitryl chloride (ClNO2) in addition to Cl2 and HOCl. Experimental and modeling evidence suggests that O(3P) formed in the minor photolysis channel from nitrate oxidizes chloride to Cl2 and HOCl, which reacts with nitrite to form ClNO2. This chemistry is different than currently accepted mechanisms involving chloride oxidation by OH and could shift our understanding of daytime halogen cycling in the lower atmosphere.

16.
Sci Total Environ ; 898: 165303, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37419351

RESUMO

Nitrate (NO3-) is a major component of atmospheric fine particles. Recent studies in eastern China have shown the increasing trend of NO3- in contrast to the ongoing control of nitrogen oxide (NOx). Here, we elucidate the effects of reduced sulfur dioxide (SO2) on the enhancement of NO3- formation based on field measurements at the summit of Mt. Tai (1534 m a.s.l.) and present detailed modelling analyses. From 2007 to 2018, the measured springtime concentrations of various primary pollutants and fine sulfate (SO42-) decreased sharply (-16.4 % to -89.7 %), whereas fine NO3- concentration increased by 22.8 %. The elevated NO3- levels cannot be explained by the changes in meteorological conditions or other related parameters but were primarily attributed to the considerable reduction in SO42- concentrations (-73.4 %). Results from a multi-phase chemical box model indicated that the reduced SO42- levels decreased the aerosol acidity and prompted the partitioning of HNO3 into the aerosol phase. WRF-Chem model analyses suggest that such a negative effect is a regional phenomenon throughout the planetary boundary layer over eastern China in spring. This study provides new insights into the worsening situation of NO3- aerosol pollution and has important implications for controlling haze pollution in China.

17.
PNAS Nexus ; 2(5): pgad124, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37152675

RESUMO

In the Arctic, new particle formation (NPF) and subsequent growth processes are the keys to produce Aitken-mode particles, which under certain conditions can act as cloud condensation nuclei (CCNs). The activation of Aitken-mode particles increases the CCN budget of Arctic low-level clouds and, accordingly, affects Arctic climate forcing. However, the growth mechanism of Aitken-mode particles from NPF into CCN range in the summertime Arctic boundary layer remains a subject of current research. In this combined Arctic cruise field and modeling study, we investigated Aitken-mode particle growth to sizes above 80 nm. A mechanism is suggested that explains how Aitken-mode particles can become CCN without requiring high water vapor supersaturation. Model simulations suggest the formation of semivolatile compounds, such as methanesulfonic acid (MSA) in fog droplets. When the fog droplets evaporate, these compounds repartition from CCNs into the gas phase and into the condensed phase of nonactivated Aitken-mode particles. For MSA, a mass increase factor of 18 is modeled. The postfog redistribution mechanism of semivolatile acidic and basic compounds could explain the observed growth of >20 nm h-1 for 60-nm particles to sizes above 100 nm. Overall, this study implies that the increasing frequency of NPF and fog-related particle processing can affect Arctic cloud properties in the summertime boundary layer.

18.
Proc Natl Acad Sci U S A ; 120(20): e2219588120, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155894

RESUMO

Aerosol microdroplets as microreactors for many important atmospheric reactions are ubiquitous in the atmosphere. pH largely regulates the chemical processes within them; however, how pH and chemical species spatially distribute within an atmospheric microdroplet is still under intense debate. The challenge is to measure pH distribution within a tiny volume without affecting the chemical species distribution. We demonstrate a method based on stimulated Raman scattering microscopy to visualize the three-dimensional pH distribution inside single microdroplets of varying sizes. We find that the surface of all microdroplets is more acidic, and a monotonic trend of pH decreasing is observed in the 2.9-µm aerosol microdroplet from center to edge, which is well supported by molecular dynamics simulation. However, bigger cloud microdroplet differs from small aerosol for pH distribution. This size-dependent pH distribution in microdroplets can be related to the surface-to-volume ratio. This work presents noncontact measurement and chemical imaging of pH distribution in microdroplets, filling the gap in our understanding of spatial pH in atmospheric aerosol.

19.
Atmos Environ (1994) ; 308: 119864, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37250918

RESUMO

The COVID-19 pandemic promoted strict restrictions to human activities in China, which led to an unexpected increase in ozone (O3) regarding to nitrogen oxides (NOx) and volatile organic compounds (VOCs) co-abatement in urban China. However, providing a quantitative assessment of the photochemistry that leads to O3 increase is still challenging. Here, we evaluated changes in O3 arising from photochemical production with precursors (NOX and VOCS) in industrial regions in Shanghai during the COVID-19 lockdowns by using machine learning models and box models. The changes of air pollutants (O3, NOX, VOCs) during the COVID-19 lockdowns were analyzed by deweathering and detrending machine learning models with regard to meteorological and emission effects. After accounting for effects of meteorological variability, we find increase in O3 concentration (49.5%). Except for meteorological effects, model results of detrending the business-as-usual changes indicate much smaller reduction (-0.6%), highlighting the O3 increase attributable to complex photochemistry mechanism and the upward trends of O3 due to clear air policy in Shanghai. We then used box models to assess the photochemistry mechanism and identify key factors that control O3 production during lockdowns. It was found that empirical evidence for a link between efficient radical propagation and the optimized O3 production efficiency of NOX under the VOC-limited conditions. Simulations with box models also indicate that priority should be given to controlling industrial emissions and vehicle exhaust while the VOCs and NOX should be managed at a proper ratio in order to control O3 in winter. While lockdown is not a condition that could ever be continued indefinitely, findings of this study offer theoretical support for formulating refined O3 management in industrial regions in Shanghai, especially in winter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...