Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 162(1): 269-284, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547282

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumor that is almost uniformly lethal in humans. Activating mutations of KRAS are found in >90% of human PDACs and are sufficient to promote acinar-to-ductal metaplasia (ADM) during tumor initiation. The roles of miRNAs in oncogenic Kras-induced ADM are incompletely understood. METHODS: The Ptf1aCre/+LSL-KrasG12D/+ and Ptf1aCre/+LSL-KrasG12D/+LSL-p53R172H/+ and caerulein-induced acute pancreatitis mice models were used. mir-802 was conditionally ablated in acinar cells to study the function of miR-802 in ADM. RESULTS: We show that miR-802 is a highly abundant and acinar-enriched pancreatic miRNA that is silenced during early stages of injury or oncogenic KrasG12D-induced transformation. Genetic ablation of mir-802 cooperates with KrasG12D by promoting ADM formation. miR-802 deficiency results in de-repression of the miR-802 targets Arhgef12, RhoA, and Sdc4, activation of RhoA, and induction of the downstream RhoA effectors ROCK1, LIMK1, COFILIN1, and EZRIN, thereby increasing F-actin rearrangement. mir-802 ablation also activates SOX9, resulting in augmented levels of ductal and attenuated expression of acinar identity genes. Consistently with these findings, we show that this miR-802-RhoA-F-actin network is activated in biopsies of pancreatic cancer patients and correlates with poor survival. CONCLUSIONS: We show miR-802 suppresses pancreatic cancer initiation by repressing oncogenic Kras-induced ADM. The role of miR-802 in ADM fills the gap in our understanding of oncogenic Kras-induced F-actin reorganization, acinar reprogramming, and PDAC initiation. Modulation of the miR-802-RhoA-F-actin network may be a new strategy to interfere with pancreatic carcinogenesis.


Assuntos
Células Acinares/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Transformação Celular Neoplásica/metabolismo , Reprogramação Celular , MicroRNAs/metabolismo , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatite/metabolismo , Células Acinares/patologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Transgênicos , MicroRNAs/genética , Mutação , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Pancreatite/genética , Pancreatite/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais
2.
Nat Commun ; 12(1): 3339, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099655

RESUMO

The intestinal epithelium is a complex structure that integrates digestive, immunological, neuroendocrine, and regenerative functions. Epithelial homeostasis is maintained by a coordinated cross-talk of different epithelial cell types. Loss of integrity of the intestinal epithelium plays a key role in inflammatory diseases and gastrointestinal infection. Here we show that the intestine-enriched miR-802 is a central regulator of intestinal epithelial cell proliferation, Paneth cell function, and enterocyte differentiation. Genetic ablation of mir-802 in the small intestine of mice leads to decreased glucose uptake, impaired enterocyte differentiation, increased Paneth cell function and intestinal epithelial proliferation. These effects are mediated in part through derepression of the miR-802 target Tmed9, a modulator of Wnt and lysozyme/defensin secretion in Paneth cells, and the downstream Wnt signaling components Fzd5 and Tcf4. Mutant Tmed9 mice harboring mutations in miR-802 binding sites partially recapitulate the augmented Paneth cell function of mice lacking miR-802. Our study demonstrates a broad miR-802 network that is important for the integration of signaling pathways of different cell types controlling epithelial homeostasis in the small intestine.


Assuntos
Diferenciação Celular/fisiologia , Enterócitos/metabolismo , Intestino Delgado/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Celulas de Paneth/metabolismo , Animais , Proliferação de Células , Feminino , Receptores Frizzled/metabolismo , Expressão Gênica , Células HEK293 , Homeostase/fisiologia , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Salmonella typhimurium , Fator de Transcrição 4/metabolismo , Transcriptoma , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Via de Sinalização Wnt
3.
J Biol Chem ; 290(43): 25891-906, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26324709

RESUMO

Direct interactions among pancreatic ß-cells via cell surface proteins inhibit basal and enhance stimulated insulin secretion. Here, we functionally and biochemically characterized Kirrel2, an immunoglobulin superfamily protein with ß-cell-specific expression in the pancreas. Our results show that Kirrel2 is a phosphorylated glycoprotein that co-localizes and interacts with the adherens junction proteins E-cadherin and ß-catenin in MIN6 cells. We further demonstrate that the phosphosites Tyr(595-596) are functionally relevant for the regulation of Kirrel2 stability and localization. Analysis of the extracellular and intracellular domains of Kirrel2 revealed that it is cleaved and shed from MIN6 cells and that the remaining membrane spanning cytoplasmic domain is processed by γ-secretase complex. Kirrel2 knockdown with RNA interference in MIN6 cells and ablation of Kirrel2 from mice with genetic deletion resulted in increased basal insulin secretion from ß-cells, with no immediate influence on stimulated insulin secretion, total insulin content, or whole body glucose metabolism. Our results show that in pancreatic ß-cells Kirrel2 localizes to adherens junctions, is regulated by multiple post-translational events, including glycosylation, extracellular cleavage, and phosphorylation, and engages in the regulation of basal insulin secretion.


Assuntos
Imunoglobulinas/fisiologia , Insulina/metabolismo , Proteínas de Membrana/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Glicosilação , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Mutação , Fosforilação , Processamento de Proteína Pós-Traducional , Homologia de Sequência de Aminoácidos
4.
J Mol Med (Berl) ; 93(10): 1159-69, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26013143

RESUMO

UNLABELLED: MicroRNAs play a crucial role in the regulation of cell growth and differentiation. Mice with genetic deletion of miR-375 exhibit impaired glycemic control due to decreased ß-cell and increased α-cell mass and function. The relative importance of these processes for the overall phenotype of miR-375KO mice is unknown. Here, we show that mice overexpressing miR-375 exhibit normal ß-cell mass and function. Selective re-expression of miR-375 in ß-cells of miR-375KO mice normalizes both, α- and ß-cell phenotypes as well as glucose metabolism. Using this model, we also analyzed the contribution of ß-cells to the total plasma miR-375 levels. Only a small proportion (≈1 %) of circulating miR-375 originates from ß-cells. Furthermore, acute and profound ß-cell destruction is sufficient to detect elevations of miR-375 levels in the blood. These findings are supported by higher miR-375 levels in the circulation of type 1 diabetes (T1D) subjects but not mature onset diabetes of the young (MODY) and type 2 diabetes (T2D) patients. Together, our data support an essential role for miR-375 in the maintenance of ß-cell mass and provide in vivo evidence for release of miRNAs from pancreatic ß-cells. The small contribution of ß-cells to total plasma miR-375 levels make this miRNA an unlikely biomarker for ß-cell function but suggests a utility for the detection of acute ß-cell death for autoimmune diabetes. KEY MESSAGES: • Overexpression of miR-375 in ß-cells does not influence ß-cell mass and function. • Increased α-cell mass in miR-375KO arises secondarily to loss of miR-375 in ß-cells. • Only a small proportion of circulating miR-375 levels originates from ß-cells. • Acute ß-cell destruction results in measurable increases of miR-375 in the blood. Circulating miR-375 levels are not a biomarker for pancreatic ß-cell function.


Assuntos
Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 2/sangue , Células Secretoras de Insulina/metabolismo , MicroRNAs/sangue , Adulto , Idoso , Animais , Biomarcadores/metabolismo , Glicemia/análise , Feminino , Dosagem de Genes , Humanos , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
5.
Nat Med ; 21(6): 619-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25985365

RESUMO

Pancreatic beta cell death is a hallmark of type 1 (T1D) and type 2 (T2D) diabetes, but the molecular mechanisms underlying this aspect of diabetic pathology are poorly understood. Here we report that expression of the microRNA (miR)-200 family is strongly induced in islets of diabetic mice and that beta cell-specific overexpression of miR-200 in mice is sufficient to induce beta cell apoptosis and lethal T2D. Conversely, mir-200 ablation in mice reduces beta cell apoptosis and ameliorates T2D. We show that miR-200 negatively regulates a conserved anti-apoptotic and stress-resistance network that includes the essential beta cell chaperone Dnajc3 (also known as p58IPK) and the caspase inhibitor Xiap. We also observed that mir-200 dosage positively controls activation of the tumor suppressor Trp53 and thereby creates a pro-apoptotic gene-expression signature found in islets of diabetic mice. Consequently, miR-200-induced T2D is suppressed by interfering with the signaling of Trp53 and Bax, a proapoptotic member of the B cell lymphoma 2 protein family. Our results reveal a crucial role for the miR-200 family in beta cell survival and the pathophysiology of diabetes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Células Secretoras de Insulina/metabolismo , MicroRNAs/genética , Animais , Apoptose/genética , Sobrevivência Celular/genética , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP40/biossíntese , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Endogâmicos NOD , MicroRNAs/metabolismo , Transdução de Sinais , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/biossíntese
6.
Nature ; 494(7435): 111-5, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23389544

RESUMO

Insulin resistance represents a hallmark during the development of type 2 diabetes mellitus and in the pathogenesis of obesity-associated disturbances of glucose and lipid metabolism. MicroRNA (miRNA)-dependent post-transcriptional gene silencing has been recognized recently to control gene expression in disease development and progression, including that of insulin-resistant type 2 diabetes. The deregulation of miRNAs miR-143 (ref. 4), miR-181 (ref. 5), and miR-103 and miR-107 (ref. 6) alters hepatic insulin sensitivity. Here we report that the expression of miR-802 is increased in the liver of two obese mouse models and obese human subjects. Inducible transgenic overexpression of miR-802 in mice causes impaired glucose tolerance and attenuates insulin sensitivity, whereas reduction of miR-802 expression improves glucose tolerance and insulin action. We identify Hnf1b (also known as Tcf2) as a target of miR-802-dependent silencing, and show that short hairpin RNA (shRNA)-mediated reduction of Hnf1b in liver causes glucose intolerance, impairs insulin signalling and promotes hepatic gluconeogenesis. In turn, hepatic overexpression of Hnf1b improves insulin sensitivity in Lepr(db/db) mice. Thus, this study defines a critical role for deregulated expression of miR-802 in the development of obesity-associated impairment of glucose metabolism through targeting of Hnf1b, and assigns Hnf1b an unexpected role in the control of hepatic insulin sensitivity.


Assuntos
Inativação Gênica , Glucose/metabolismo , Fator 1-beta Nuclear de Hepatócito/deficiência , MicroRNAs/genética , Obesidade/genética , Animais , Regulação da Expressão Gênica , Gluconeogênese , Glucose/biossíntese , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Fator 1-beta Nuclear de Hepatócito/genética , Fator 1-beta Nuclear de Hepatócito/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Fígado/metabolismo , Camundongos , MicroRNAs/biossíntese , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...