Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Rev Phys Chem ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38382572

RESUMO

Molecular dynamics (MD) enables the study of physical systems with excellent spatiotemporal resolution but suffers from severe timescale limitations. To address this, enhanced sampling methods have been developed to improve the exploration of configurational space. However, implementing these methods is challenging and requires domain expertise. In recent years, integration of machine learning (ML) techniques into different domains has shown promise, prompting their adoption in enhanced sampling as well. Although ML is often employed in various fields primarily due to its data-driven nature, its integration with enhanced sampling is more natural with many common underlying synergies. This review explores the merging of ML and enhanced MD by presenting different shared viewpoints. It offers a comprehensive overview of this rapidly evolving field, which can be difficult to stay updated on. We highlight successful strategies such as dimensionality reduction, reinforcement learning, and flow-based methods. Finally, we discuss open problems at the exciting ML-enhanced MD interface. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 75 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37162888

RESUMO

A key step towards rational microbiome engineering is the in silico sampling of realistic microbial communities that correspond to desired host phenotypes, and vice versa. This remains challenging due to a lack of generative models that simultaneously model compositions of host-associated microbiomes and host phenotypes. To that end, we present a machine learning model based on the consumer/resource (C/R) framework. In the model, variation in microbial ecosystem composition arises due to differences in the availability of effective resources (latent variables) while species' resource preferences remain conserved. Variation in the same latent variables is used to model phenotypic variation across hosts. In silico microbiomes generated by our model accurately reproduce universal and dataset-specific statistics of bacterial communities. The model allows us to address two salient questions in microbiome design: (1) which host phenotypes maximally constrain the composition of the host-associated microbiome? and (2) what are plausible microbiome compositions corresponding to user-specified host phenotypes? Thus, our model aids the design and analysis of microbial communities associated with host phenotypes of interest.

3.
Org Biomol Chem ; 20(37): 7429-7438, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36097881

RESUMO

We report the molecular recognition properties of Pillar[n]MaxQ (P[n]MQ) toward a series of (methylated) amino acids, amino acid amides, and post-translationally modified peptides by a combination of 1H NMR, isothermal titration calorimetry, indicator displacement assays, and molecular dynamics simulations. We find that P6MQ is a potent receptor for N-methylated amino acid side chains. P6MQ recognized the H3K4Me3 peptide with Kd = 16 nM in phosphate buffered saline.


Assuntos
Aminoácidos , Peptídeos , Amidas , Aminoácidos/química , Calorimetria , Peptídeos/química , Fosfatos
4.
Proc Natl Acad Sci U S A ; 119(32): e2203656119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35925885

RESUMO

Using simulations or experiments performed at some set of temperatures to learn about the physics or chemistry at some other arbitrary temperature is a problem of immense practical and theoretical relevance. Here we develop a framework based on statistical mechanics and generative artificial intelligence that allows solving this problem. Specifically, we work with denoising diffusion probabilistic models and show how these models in combination with replica exchange molecular dynamics achieve superior sampling of the biomolecular energy landscape at temperatures that were never simulated without assuming any particular slow degrees of freedom. The key idea is to treat the temperature as a fluctuating random variable and not a control parameter as is usually done. This allows us to directly sample from the joint probability distribution in configuration and temperature space. The results here are demonstrated for a chirally symmetric peptide and single-strand RNA undergoing conformational transitions in all-atom water. We demonstrate how we can discover transition states and metastable states that were previously unseen at the temperature of interest and even bypass the need to perform further simulations for a wide range of temperatures. At the same time, any unphysical states are easily identifiable through very low Boltzmann weights. The procedure while shown here for a class of molecular simulations should be more generally applicable to mixing information across simulations and experiments with varying control parameters.


Assuntos
Inteligência Artificial , Simulação de Dinâmica Molecular , Peptídeos , RNA , Temperatura , Peptídeos/química , Física , RNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...