Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513285

RESUMO

Induced by the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the COVID-19 pandemic underlined the clear need for antivirals against coronaviruses. In an effort to identify new inhibitors of SARS-CoV-2, a screening of 824 extracts prepared from various parts of 400 plant species belonging to the Rutaceae and Annonaceae families was conducted using a cell-based HCoV-229E inhibition assay. Due to its significant activity, the ethyl acetate extract of the leaves of Clausena harmandiana was selected for further chemical and biological investigations. Mass spectrometry-guided fractionation afforded three undescribed phenolic lipids (1-3), whose structures were determined via spectroscopic analysis. The absolute configurations of 1 and 2 were determined by analyzing Mosher ester derivatives. The antiviral activity against SARS-CoV-2 was subsequently shown, with IC50 values of 0.20 and 0.05 µM for 2 and 3, respectively. The mechanism of action was further assessed, showing that both 2 and 3 are inhibitors of coronavirus entry by acting directly on the viral particle. Phenolic lipids from Clausena harmandiana might be a source of new antiviral agents against human coronaviruses.


Assuntos
COVID-19 , Clausena , Humanos , SARS-CoV-2 , Clausena/química , Pandemias , Antivirais/farmacologia , Folhas de Planta , Lipídeos
3.
Sci Rep ; 12(1): 5999, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397679

RESUMO

The newly identified coronavirus SARS-CoV-2 is responsible for the worldwide pandemic COVID-19. Considerable efforts have been devoted for the development of effective vaccine strategies against COVID-19. The SARS-CoV-2 spike protein has been identified as the major antigen candidate for the development of COVID-19 vaccines. The Pfizer-BioNTech COVID-19 vaccine COMIRNATY is a lipid nanoparticle-encapsulated mRNA encoding a full-length and prefusion-stabilized SARS-CoV-2 spike protein. In the present study, synthetic peptide-based ELISA assays were performed to identify linear B-cell epitopes into the spike protein that contribute to elicitation of antibody response in COMIRNATY-vaccinated individuals. The synthetic S2P6 peptide containing the spike residues 1138/1169 and to a lesser extent, the synthetic S1P4 peptide containing the spike residues 616/644 were recognized by the immune sera from COMIRNATY vaccine recipients but not COVID-19 recovered patients. We assume that the synthetic S2P6 peptide and to a lesser extent the synthetic S1P4 peptide, could be of interest to measure the dynamic of antibody response to COVID-19 mRNA vaccines. The S2P6 peptide has been identified as immunogenic in adult BALB/c mice that received protein-peptide conjugates in a prime-boost schedule. This raises the question on the role of the B-cell epitope peptide containing the SARS-CoV-2 spike residues 1138/1169 in protective efficacy of the Pfizer-BioNTech COVID-19 vaccine COMIRNATY.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Epitopos de Linfócito B , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Antivirais/imunologia , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Humanos , Lipossomos , Camundongos , Nanopartículas , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/imunologia
4.
J Clin Med ; 11(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35054099

RESUMO

Since the start of the COVID-19 pandemic, many studies have investigated the humoral response to SARS-CoV-2 during infection. Studies with native viral proteins constitute a first-line approach to assessing the overall immune response, but small peptides are an accurate and valuable tool for the fine characterization of B-cell epitopes, despite the restriction of this approach to the determination of linear epitopes. In this study, we used ELISA and peptides covering a selection of structural and non-structural SARS-CoV-2 proteins to identify key epitopes eliciting a strong immune response that could serve as a biological signature of disease characteristics, such as severity, in particular. We used 213 plasma samples from a cohort of patients well-characterized clinically and biologically and followed for COVID-19 infection. We found that patients developing severe disease had higher titers of antibodies mapping to multiple specific epitopes than patients with mild to moderate disease. These data are potentially important as they could be used for immunological profiling to improve our knowledge of the quantitative and qualitative characteristics of the humoral response in relation to patient outcome.

5.
Cells ; 9(6)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570893

RESUMO

Hepatitis B virus (HBV), an enveloped partially double-stranded DNA virus, is a widespread human pathogen responsible for more than 250 million chronic infections worldwide. Current therapeutic strategies cannot eradicate HBV due to the persistence of the viral genome in a special DNA structure (covalently closed circular DNA, cccDNA). The identification of sodium taurocholate co-transporting polypeptide (NTCP) as an entry receptor for both HBV and its satellite virus hepatitis delta virus (HDV) has led to great advances in our understanding of the life cycle of HBV, including the early steps of infection in particular. However, the mechanisms of HBV internalization and the host factors involved in this uptake remain unclear. Improvements in our understanding of HBV entry would facilitate the design of new therapeutic approaches targeting this stage and preventing the de novo infection of naïve hepatocytes. In this review, we provide an overview of current knowledge about the process of HBV internalization into cells.


Assuntos
Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/patogenicidade , Internalização do Vírus , Endocitose , Heparina/análogos & derivados , Heparina/fisiologia , Hepatite B/fisiopatologia , Hepatite B/terapia , Hepatite B/virologia , Vírus da Hepatite B/genética , Hepatócitos/fisiologia , Hepatócitos/virologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio/fisiologia , Proteoglicanas/fisiologia , Receptores Virais/fisiologia , Simportadores/fisiologia
6.
J Mol Biol ; 432(13): 3802-3819, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32371046

RESUMO

Hepatitis B virus (HBV) core protein (HBc) is essential to the formation of the HBV capsid. HBc contains two domains: the N-terminal domain corresponding to residues 1-140 essential to form the icosahedral shell and the C-terminal domain corresponding to a basic and phosphorylated peptide, and required for DNA replication. The role of these two domains for HBV capsid assembly was essentially studied in vitro with HBc purified from mammalian or non-mammalian cell lysates, but their respective role in living cells remains to be clarified. We therefore investigated the assembly of the HBV capsid in Huh7 cells by combining fluorescence lifetime imaging microscopy/Förster's resonance energy transfer, fluorescence correlation spectroscopy and transmission electron microscopy approaches. We found that wild-type HBc forms oligomers early after transfection and at a sub-micromolar concentration. These oligomers are homogeneously diffused throughout the cell. We quantified a stoichiometry ranging from ~170 to ~230 HBc proteins per oligomer, consistent with the visualization of eGFP-containingHBV capsid shaped as native capsid particles by transmission electron microscopy. In contrast, no assembly was observed when HBc-N-terminal domain was expressed. This highlights the essential role of the C-terminal domain to form capsid in mammalian cells. Deletion of either the third helix or of the 124-135 residues of HBc had a dramatic impact on the assembly of the HBV capsid, inducing the formation of mis-assembled oligomers and monomers, respectively. This study shows that our approach using fluorescent derivatives of HBc is an innovative method to investigate HBV capsid formation.


Assuntos
Vírus da Hepatite B/genética , Hepatite B/genética , Proteínas do Core Viral/genética , Montagem de Vírus/genética , Capsídeo/metabolismo , Replicação do DNA , Hepatite B/virologia , Vírus da Hepatite B/patogenicidade , Humanos , Domínios Proteicos/genética , RNA Viral/genética , Replicação Viral/genética
7.
Cell Microbiol ; 22(8): e13205, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32216005

RESUMO

Hepatitis B virus (HBV) is a leading cause of cirrhosis and hepatocellular carcinoma worldwide, with 250 million individuals chronically infected. Many stages of the HBV infectious cycle have been elucidated, but the mechanisms of HBV entry remain poorly understood. The identification of the sodium taurocholate cotransporting polypeptide (NTCP) as an HBV receptor and the establishment of NTCP-overexpressing hepatoma cell lines susceptible to HBV infection opens up new possibilities for investigating these mechanisms. We used HepG2-NTCP cells, and various chemical inhibitors and RNA interference (RNAi) approaches to investigate the host cell factors involved in HBV entry. We found that HBV uptake into these cells was dependent on the actin cytoskeleton and did not involve macropinocytosis or caveolae-mediated endocytosis. Instead, entry occurred via the clathrin-mediated endocytosis pathway. HBV internalisation was inhibited by pitstop-2 treatment and RNA-mediated silencing (siRNA) of the clathrin heavy chain, adaptor protein AP-2 and dynamin-2. We were able to visualise HBV entry in clathrin-coated pits and vesicles by electron microscopy (EM) and cryo-EM with immunogold labelling. These data demonstrating that HBV uses a clathrin-mediated endocytosis pathway to enter HepG2-NTCP cells increase our understanding of the complete HBV life cycle.


Assuntos
Clatrina/metabolismo , Endocitose , Vírus da Hepatite B/fisiologia , Internalização do Vírus , Clatrina/ultraestrutura , Microscopia Crioeletrônica , Células Hep G2 , Vírus da Hepatite B/ultraestrutura , Interações entre Hospedeiro e Microrganismos , Humanos , Microscopia Eletrônica , Interferência de RNA , Proteínas do Envelope Viral/metabolismo
8.
Sci Rep ; 9(1): 16178, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700077

RESUMO

Hepatitis B virus (HBV) production requires intricate interactions between the envelope and core proteins. Analyses of mutants of these proteins have made it possible to map regions involved in the formation and secretion of virions. Tests of binding between core and envelope peptides have also been performed in cell-free conditions, to study the interactions potentially underlying these mechanisms. We investigated the residues essential for core-envelope interaction in a cellular context in more detail, by transiently producing mutant or wild-type L, S, or core proteins separately or in combination, in Huh7 cells. The colocalization and interaction of these proteins were studied by confocal microscopy and co-immunoprecipitation, respectively. The L protein was shown to constitute a molecular platform for the recruitment of S and core proteins in a perinuclear environment. Several core amino acids were found to be essential for direct interaction with L, including residue Y132, known to be crucial for capsid formation, and residues L60, L95, K96 and I126. Our results confirm the key role of L in the tripartite core-S-L interaction and identify the residues involved in direct core-L interaction. This model may be valuable for studies of the potential of drugs to inhibit HBV core-envelope interaction.


Assuntos
Capsídeo/metabolismo , Vírus da Hepatite B/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas do Envelope Viral/metabolismo , Linhagem Celular Tumoral , Vírus da Hepatite B/genética , Humanos , Proteínas do Core Viral/genética , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...