Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 121(7): 1017-27, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15989952

RESUMO

ATP hydrolysis by AAA+ ClpX hexamers powers protein unfolding and translocation during ClpXP degradation. Although ClpX is a homohexamer, positive and negative allosteric interactions partition six potential nucleotide binding sites into three classes with asymmetric properties. Some sites release ATP rapidly, others release ATP slowly, and at least two sites remain nucleotide free. Recognition of the degradation tag of protein substrates requires ATP binding to one set of sites and ATP or ADP binding to a second set of sites, suggesting a mechanism that allows repeated unfolding attempts without substrate release over multiple ATPase cycles. Our results rule out concerted hydrolysis models involving ClpX(6)*ATP(6) or ClpX(6)*ADP(6) and highlight structures of hexameric AAA+ machines with three or four nucleotides as likely functional states. These studies further emphasize commonalities between distant AAA+ family members, including protein and DNA translocases, helicases, motor proteins, clamp loaders, and other ATP-dependent enzymes.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , ATPases Bacterianas Próton-Translocadoras/metabolismo , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Difosfato de Adenosina/metabolismo , Regulação Alostérica/fisiologia , Sítio Alostérico/fisiologia , Sítios de Ligação/fisiologia , Ligação Competitiva/fisiologia , Endopeptidase Clp/química , Metabolismo Energético/fisiologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Hidrólise , Modelos Moleculares , Nucleotídeos/metabolismo , Dobramento de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
2.
Cell ; 119(1): 9-18, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15454077

RESUMO

Machines of protein destruction-including energy-dependent proteases and disassembly chaperones of the AAA(+) ATPase family-function in all kingdoms of life to sculpt the cellular proteome, ensuring that unnecessary and dangerous proteins are eliminated and biological responses to environmental change are rapidly and properly regulated. Exciting progress has been made in understanding how AAA(+) machines recognize specific proteins as targets and then carry out ATP-dependent dismantling of the tertiary and/or quaternary structure of these molecules during the processes of protein degradation and the disassembly of macromolecular complexes.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Peptídeo Hidrolases/metabolismo , Proteoma/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adenosina Trifosfatases/genética , Animais , Sítios de Ligação/fisiologia , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Conformação Molecular , Peptídeo Hidrolases/genética , Proteoma/genética
3.
Proc Natl Acad Sci U S A ; 101(33): 12136-41, 2004 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-15297609

RESUMO

The ssrA-degradation tag sequence contains contiguous binding sites for the SspB adaptor and the ClpX component of the ClpXP protease. Although SspB normally enhances ClpXP degradation of ssrA-tagged substrates, it inhibits proteolysis under conditions that prevent tethering to ClpX. By increasing the spacing between the protease and adaptor-binding determinants in the ssrA tag, substrates were obtained that displayed improved SspB-mediated binding to and degradation by ClpXP. These extended-tag substrates also showed significantly reduced conditional inhibition but bound SspB normally. Both wild-type and mutant tags showed highly dynamic SspB interactions. Together, these results strongly support delivery models in which SspB and ClpX bind concurrently to the ssrA tag, but also suggest that clashes between SspB and ClpX weaken simultaneous binding. During substrate delivery, this signal masking is overcome by tethering SspB to ClpX, which ensures local concentrations high enough to drive tag engagement. This obstruct-then-stimulate mechanism may have evolved to allow additional levels of regulation and could be a common trait of adaptor-mediated protein degradation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Serina Endopeptidases/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Endopeptidase Clp , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Fluorescência Verde , Cinética , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Moleculares , Subunidades Proteicas , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/genética , Especificidade por Substrato
4.
Nat Struct Mol Biol ; 11(5): 404-11, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15064753

RESUMO

In the ClpXP compartmental protease, ring hexamers of the AAA(+) ClpX ATPase bind, denature and then translocate protein substrates into the degradation chamber of the double-ring ClpP(14) peptidase. A key question is the extent to which functional communication between ClpX and ClpP occurs and is regulated during substrate processing. Here, we show that ClpX-ClpP affinity varies with the protein-processing task of ClpX and with the catalytic engagement of the active sites of ClpP. Functional communication between symmetry-mismatched ClpXP rings depends on the ATPase activity of ClpX and seems to be transmitted through structural changes in its IGF loops, which contact ClpP. A conserved arginine in the sensor II helix of ClpX links the nucleotide state of ClpX to the binding of ClpP and protein substrates. A simple model explains the observed relationships between ATP binding, ATP hydrolysis and functional interactions between ClpX, protein substrates and ClpP.


Assuntos
Adenosina Trifosfatases/fisiologia , Processamento de Proteína Pós-Traducional , Serina Endopeptidases/fisiologia , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Endopeptidase Clp , Proteínas de Escherichia coli , Modelos Moleculares , Chaperonas Moleculares , Dados de Sequência Molecular , Ligação Proteica , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo
5.
Mol Cell ; 13(3): 443-9, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14967151

RESUMO

SspB homodimers deliver ssrA-tagged substrates to ClpXP for degradation. SspB consists of a substrate binding domain and an unstructured tail with a ClpX binding module (XB). Using computational design, we engineered an SspB heterodimer whose subunits did not form homodimers. Experiments with the designed molecule and variants lacking one or two tails demonstrate that both XB modules are required for strong binding and efficient substrate delivery to ClpXP. Assembly of stable SspB-substrate-ClpX delivery complexes requires the coupling of weak tethering interactions between ClpX and the SspB XB modules as well as interactions between ClpX and the substrate degradation tag. The ClpX hexamer contains three XB binding sites, one per N domain dimer, and thus binds strongly to just one SspB dimer at a time. Because different adaptor proteins use the same tethering sites in ClpX, those which employ bivalent tethering, like SspB, will compete more effectively for substrate delivery to ClpXP.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Proteínas de Transporte/química , Proteínas de Escherichia coli/química , Engenharia de Proteínas/métodos , Serina Endopeptidases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Desenho Assistido por Computador , Dimerização , Endopeptidase Clp , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Haemophilus influenzae/genética , Peptídeos e Proteínas de Sinalização Intracelular , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...