Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 139: 105360, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36804527

RESUMO

Over the recent years, EU chemicals legislation, guidance and test guidelines have been developed or adapted for nanomaterials to facilitate safe use of nanomaterials. This paper provides an overview of the information requirements across different EU regulatory areas. For each information requirement, a group of 22 experts identified potential needs for further action to accommodate guidance and test guidelines to nanomaterials. Eleven different needs for action were identified, capturing twenty-two information requirements that are specific to nanomaterials and relevant to multiple regulatory areas. These were further reduced to three overarching issues: 1) resolve issues around nanomaterial dispersion stability and dosing in toxicity testing, in particular for human health endpoints, 2) further develop tests or guidance on degradation and transformation of organic nanomaterials or nanomaterials with organic components, and 3) further develop tests and guidance to measure (a)cellular reactivity of nanomaterials. Efforts towards addressing these issues will result in better fit-for-purpose test methods for (EU) regulatory compliance. Moreover, it secures validity of hazard and risk assessments of nanomaterials. The results of the study accentuate the need for a structural process of identification of information needs and knowledge generation, preferably as part of risk governance and closely connected to technological innovation policy.


Assuntos
Segurança Química , Nanoestruturas , Humanos , Nanoestruturas/toxicidade , Políticas , Medição de Risco/métodos , Testes de Toxicidade/métodos
2.
Methods Mol Biol ; 1894: 83-122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30547457

RESUMO

Genotoxicity is associated with serious health effects and includes different types of DNA lesions, gene mutations, structural chromosome aberrations involving breakage and/or rearrangements of chromosomes (referred to as clastogenicity) and numerical chromosome aberrations (referred to as aneuploidy). Assessing the potential genotoxic properties of chemicals, including nanomaterials (NMs), is a key element in regulatory safety assessment. State-of-the-art genotoxicity testing includes a battery of assays covering gene mutations, structural and numerical chromosome aberrations. Typically various in vitro assays are performed in the first tier. It is not very likely that NMs may induce as yet unknown types of genotoxic damage beyond what is already known for chemicals. Thus, principles of genotoxicity testing as established for chemicals should be applicable to NMs as well. However, established test guidelines (i.e., OECD TG) may require adaptations for NM testing, as currently under discussion at the OECD. This chapter gives an overview of genotoxicity testing of NMs in vitro based on experiences from various research projects. We recommend a combination of a mammalian gene mutation assay (at either Tk or HPRT locus), the in vitro comet assay, and the cytokinesis-block micronucleus assay, which are discussed in detail here. In addition we also include the Cell Transformation Assay (CTA) as a promising novel test for predicting NM-induced cell transformation in vitro.


Assuntos
Ensaio Cometa/métodos , Técnicas In Vitro/métodos , Nanoestruturas/toxicidade , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Ensaio de Unidades Formadoras de Colônias/instrumentação , Ensaio de Unidades Formadoras de Colônias/métodos , Ensaio Cometa/instrumentação , Dano ao DNA/genética , Guias como Assunto , Humanos , Técnicas In Vitro/instrumentação , Técnicas In Vitro/normas , Indicadores e Reagentes/química , Camundongos , Testes para Micronúcleos/instrumentação , Testes para Micronúcleos/métodos , Ratos , Transformação Genética/genética
3.
Arch Toxicol ; 87(12): 2249-62, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23779146

RESUMO

In light of the broad spectrum of products containing nanosilver, the harmfulness of nanosilver to human health and the environment was intensively discussed at a conference held in February 2012 at the BfR. The conference agenda covered the aspects of analytics of nanosilver materials, human exposure and toxicology as well as effects on microorganisms and the environment. The discussion recovered major gaps related to commonly agreed guidelines for sample preparation and central analytical techniques. In particular, the characterization of the nanoparticles in complex matrices was regarded as a challenge which might become a pitfall for further innovation and application. Historical and anecdotal records of colloidal silver have been sometimes taken as empirical proof for the general low toxicity of nanosilver. Yet as reported herein, a growing number of animal studies following modern performance standards of toxicity testing have been carried out recently revealing well-characterized adverse effects on different routes of exposure in addition to argyria. Furthermore, recent approaches in exposure assessment were reported. However, consumer exposure scenarios are only starting to be developed and reliable exposure data are still rare. It was further widely agreed on the workshop that the use of silver may lead to the selection of silver resistant bacteria. With respect to its environmental behavior, it was suggested that nanosilver released to wastewater may have negligible ecotoxicological effects. Finally, the presentations and discussion on risk assessment and regulation of nanosilver applications gave insights into different approaches of risk assessment of nanomaterials to be performed under the various regulatory frameworks.


Assuntos
Nanopartículas Metálicas/efeitos adversos , Compostos de Prata/efeitos adversos , Compostos de Prata/análise , Animais , Qualidade de Produtos para o Consumidor , Resistência a Medicamentos , Exposição Ambiental , União Europeia , Humanos , Legislação de Medicamentos , Nanopartículas Metálicas/toxicidade , Nanoestruturas , Medição de Risco , Compostos de Prata/toxicidade , Testes de Toxicidade
4.
Int J Hyg Environ Health ; 214(3): 231-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21168363

RESUMO

A summary of a critical review by a working group of the German Federal Environment Agency and the German Federal Institute for Risk Assessment on the carcinogenic potential of nanomaterials is presented. After a critical review of the available data, we conclude that the potential carcinogenic risk of nanomaterials can currently be assessed only on a case-by-case basis. There is certain evidence that different forms of CNTs (carbon nanotubes) and nanoscale TiO(2) particles may induce tumours in sensitive animal models. It is assumed that the mode of action of the inhalation toxicity of asbestos-like fibres and of inhalable fractions of biopersistent fine dusts of low toxicity (nano-TiO(2)) is linked to chronic inflammatory processes. Existing epidemiological studies on carcinogenicity for these manufactured nanomaterials are not sufficiently conclusive. Generally speaking, the database is not adequate for an assessment of the carcinogenic potential of nanomaterials. Whereas a number of studies provide evidence of a nano-specific potential to induce tumours, other studies did not. This is possibly due to insufficient characterisation of the test material, difference in the experimental design, the use of different animal models and species and/or differences in dosimetry (both with regard to the appropriate dose metric and the estimated effective dose quantities). An assessment of the carcinogenic potential and its relevance for humans are currently fraught with uncertainty. Furthermore, the nano-specificity of the carcinogenic effects observed cannot be conclusively evaluated. Specific carcinogenic effects of nanomaterials may be both quantitative and qualitative. In quantitative terms, the carcinogenic effects of nanoparticles are thought to be simply more pronounced compared to the corresponding bulk material (due, for example, to the considerably larger surface area and higher number of particles relative to the mass concentration). On the other hand, certain nano-properties such as small size, shape and reactivity, retention time and distribution in the body after overcoming biological barriers, as well as subcellular and molecular interactions may play a role in determining the toxicity in qualitative terms, i.e. the carcinogenic potential of the nanomaterial and the non-nanoscale comparison substance may be fundamentally different. All of these factors leave no doubt about the fact that there is a great need for research in this area and that new standardised test methods need to be developed or existing ones adapted at the very least to achieve valid answers regarding the carcinogenic potential of nanomaterials. Global production of nanomaterials is set to increase in the years to come, and new materials with new properties will be developed, so that greater human exposure to them must be anticipated. No reliable conclusions can currently be drawn about exposure to nanoparticles and their release from products. Firstly, there are substantial deficits in information about the processing of nanomaterials in products and preparations. Secondly, there are only a small number of studies on nanoparticle release, and reliable techniques for measuring and monitoring nanomaterials in different environmental media are still being developed which is both complex and costly. Despite the uncertainties, the findings to date on the carcinogenic potential of nanomaterials must be taken seriously, and precautionary measures to minimise exposure should go hand in hand with the development of a comprehensive and conclusive toxicological methodology and testing procedure for nanostructured materials that includes all possible exposure routes. With regard to possible legal classification of nanomaterials and the transferability of classifications of their non-nanomaterial counterparts, we believe it is necessary to have separate procedures for nano and non-nano forms. Furthermore, criteria for evaluating nano-specific carcinogenic properties should be constantly updated and adapted to the state of knowledge. There is a need here for amendments to be made to EU legislation, as currently nanoforms do not represent a separate category of substance in their own right.


Assuntos
Carcinógenos Ambientais/efeitos adversos , Regulamentação Governamental , Exposição por Inalação/efeitos adversos , Nanoestruturas/efeitos adversos , Material Particulado/efeitos adversos , Animais , Amianto/efeitos adversos , União Europeia , Alemanha , Órgãos Governamentais , Inflamação/etiologia , Exposição por Inalação/legislação & jurisprudência , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...