Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 143(4): 1127-1142, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32293668

RESUMO

Chronic disability in multiple sclerosis is linked to neuroaxonal degeneration. 4-aminopyridine (4-AP) is used and licensed as a symptomatic treatment to ameliorate ambulatory disability in multiple sclerosis. The presumed mode of action is via blockade of axonal voltage gated potassium channels, thereby enhancing conduction in demyelinated axons. In this study, we provide evidence that in addition to those symptomatic effects, 4-AP can prevent neuroaxonal loss in the CNS. Using in vivo optical coherence tomography imaging, visual function testing and histologic assessment, we observed a reduction in retinal neurodegeneration with 4-AP in models of experimental optic neuritis and optic nerve crush. These effects were not related to an anti-inflammatory mode of action or a direct impact on retinal ganglion cells. Rather, histology and in vitro experiments indicated 4-AP stabilization of myelin and oligodendrocyte precursor cells associated with increased nuclear translocation of the nuclear factor of activated T cells. In experimental optic neuritis, 4-AP potentiated the effects of immunomodulatory treatment with fingolimod. As extended release 4-AP is already licensed for symptomatic multiple sclerosis treatment, we performed a retrospective, multicentre optical coherence tomography study to longitudinally compare retinal neurodegeneration between 52 patients on continuous 4-AP therapy and 51 matched controls. In line with the experimental data, during concurrent 4-AP therapy, degeneration of the macular retinal nerve fibre layer was reduced over 2 years. These results indicate disease-modifying effects of 4-AP beyond symptomatic therapy and provide support for the design of a prospective clinical study using visual function and retinal structure as outcome parameters.


Assuntos
4-Aminopiridina/farmacologia , Esclerose Múltipla/patologia , Fármacos Neuroprotetores/farmacologia , Neurite Óptica/patologia , Degeneração Retiniana/patologia , Adulto , Idoso , Animais , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Células-Tronco Neurais/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Wistar
2.
J Neuroinflammation ; 15(1): 71, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29514678

RESUMO

BACKGROUND: In multiple sclerosis (MS), neurodegeneration is the main reason for chronic disability. Alpha-lipoic acid (LA) is a naturally occurring antioxidant which has recently been demonstrated to reduce the rate of brain atrophy in progressive MS. However, it remains uncertain if it is also beneficial in the early, more inflammatory-driven phases. As clinical studies are costly and time consuming, optic neuritis (ON) is often used for investigating neuroprotective or regenerative therapeutics. We aimed to investigate the prospect for success of a clinical ON trial using an experimental autoimmune encephalomyelitis-optic neuritis (EAE-ON) model with visual system readouts adaptable to a clinical ON trial. METHODS: Using an in vitro cell culture model for endogenous oxidative stress, we compared the neuroprotective capacity of racemic LA with the R/S-enantiomers and its reduced form. In vivo, we analyzed retinal neurodegeneration using optical coherence tomography (OCT) and the visual function by optokinetic response (OKR) in MOG35-55-induced EAE-ON in C57BL/6J mice. Ganglion cell counts, inflammation, and demyelination were assessed by immunohistological staining of retinae and optic nerves. RESULTS: All forms of LA provided equal neuroprotective capacities in vitro. In EAE-ON, prophylactic LA therapy attenuated the clinical EAE score and prevented the thinning of the inner retinal layer while therapeutic treatment was not protective on visual outcomes. CONCLUSIONS: A prophylactic LA treatment is necessary to protect from visual loss and retinal thinning in EAE-ON, suggesting that a clinical ON trial starting therapy after the onset of symptoms may not be successful.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Degeneração Neural/prevenção & controle , Retina/patologia , Ácido Tióctico/uso terapêutico , Transtornos da Visão/prevenção & controle , Complexo Vitamínico B/uso terapêutico , Animais , Complexo CD3/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/complicações , Feminino , Glutationa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Básica da Mielina/metabolismo , Degeneração Neural/etiologia , Nistagmo Optocinético/fisiologia , Carbonilação Proteica/fisiologia , Tomografia de Coerência Óptica , Transtornos da Visão/etiologia
3.
J Neurosci ; 36(14): 3890-902, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27053198

RESUMO

Functional recovery of injured peripheral neurons often remains incomplete, but the clinical outcome can be improved by increasing the axonal growth rate. Adult transgenic GSK3α(S/A)/ß(S/A) knock-in mice with sustained GSK3 activity show markedly accelerated sciatic nerve regeneration. Here, we unraveled the molecular mechanism underlying this phenomenon, which led to a novel pharmacological approach for the promotion of functional recovery after nerve injury.In vitroandin vivoanalysis of GSK3 single knock-in mice revealed the unexpected contribution of GSK3α in addition to GSK3ß, as both GSK3(S/A) knock-ins improved axon regeneration. Moreover, growth stimulation depended on overall GSK3 activity, correlating with increased phosphorylation of microtubule-associated protein 1B and reduced microtubule detyrosination in axonal tips. Pharmacological inhibition of detyrosination by parthenolide or cnicin mimicked this axon growth promotion in wild-type animals, although it had no effect in GSK3α(S/A)/ß(S/A) mice. These results support the conclusion that sustained GSK3 activity primarily targets microtubules in growing axons, maintaining them in a more dynamic state to facilitate growth. Accordingly, further manipulation of microtubule stability using either paclitaxel or nocodazole compromised the effects of parthenolide. Strikingly, either local or systemic application of parthenolide in wild-type mice dose-dependently acceleratedin vivoaxon regeneration and functional recovery similar to GSK3α(S/A)/ß(S/A) mice. Thus, reducing microtubule detyrosination in axonal tips may be a novel, clinically suitable strategy to treat nerve damage. SIGNIFICANCE STATEMENT: Peripheral nerve regeneration often remains incomplete, due to an insufficient growth rate of injured axons. Transgenic mice with sustained GSK3 activity showed markedly accelerated nerve regeneration upon injury. Here, we identified the molecular mechanism underlying this phenomenon and provide a novel therapeutic principle for promoting nerve repair. Analysis of transgenic mice revealed a dependence on overall GSK3 activity and reduction of microtubule detyrosination in axonal tips. Pharmacological inhibition of detyrosination by parthenolide fully mimicked this axon growth promotion in wild-type mice. Strikingly, local or systemic treatment with parthenolidein vivomarkedly accelerated axon regeneration and functional recovery. Thus, pharmacological inhibition of microtubule detyrosination may be a novel, clinically suitable strategy for nerve repair with potential relevance for human patients.


Assuntos
Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Tirosina/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Axônios/metabolismo , Relação Dose-Resposta a Droga , Técnicas de Introdução de Genes , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Camundongos , Camundongos Endogâmicos C57BL , Nocodazol/farmacologia , Paclitaxel/farmacologia , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/crescimento & desenvolvimento , Fosforilação , Nervo Isquiático/patologia , Sesquiterpenos/farmacologia
4.
Neurobiol Dis ; 55: 76-86, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23578489

RESUMO

Mature retinal ganglion cells (RGCs) do not normally regenerate injured axons, but undergo apoptosis soon after axotomy. Besides the insufficient intrinsic capability of mature neurons to regrow axons inhibitory molecules located in myelin of the central nervous system as well as the glial scar forming at the site of injury strongly limit axon regeneration. Nevertheless, RGCs can be transformed into a regenerative state upon inflammatory stimulation (IS), enabling these neurons to grow axons into the injured optic nerve. The outcome of IS stimulated regeneration is, however, still limited by the inhibitory extracellular environment. Here, we report that the chemokine CXCL12/SDF-1 moderately stimulates neurite growth of mature RGCs on laminin in culture and, in contrast to CNTF, exerts potent disinhibitory effects towards myelin. Consistently, co-treatment of RGCs with CXCL12 facilitated CNTF stimulated neurite growth of RGCs on myelin. Mature RGCs express CXCR4, the cognate CXCL12 receptor. Furthermore, the neurite growth promoting and disinhibitory effects of CXCL12 were abrogated by a specific CXCR4 antagonist and by inhibition of the PI3K/AKT/mTOR-, but not the JAK/STAT3-pathway. In vivo, intravitreal application of CXCL12 sustained mTOR activity in RGCs upon optic nerve injury and moderately stimulated axon regeneration in the optic nerve without affecting the survival of RGCs. Importantly, intravitreal application of CXCL12 also significantly increased IS triggered axon regeneration in vivo. These data suggest that the disinhibitory effect of CXCL12 towards myelin may be a useful feature to facilitate optic nerve regeneration, particularly in combination with other axon growth stimulatory treatments.


Assuntos
Quimiocina CXCL12/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Células Cultivadas , Quimiocina CXCL12/uso terapêutico , Fator Neurotrófico Ciliar/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Proteína GAP-43/metabolismo , Compressão Nervosa/efeitos adversos , Neuritos/efeitos dos fármacos , Neuritos/enzimologia , Doenças do Nervo Óptico/tratamento farmacológico , Doenças do Nervo Óptico/fisiopatologia , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/citologia , Transdução de Sinais/efeitos dos fármacos , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...