Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 521(13): 3099-115, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23787922

RESUMO

The zebrafish has recently become a source of new data on the mechanisms of neural stem cell (NSC) maintenance and ongoing neurogenesis in adult brains. In this vertebrate, neurogenesis occurs at high levels in all ventricular regions of the brain, and brain injuries recover successfully, owing to the recruitment of radial glia, which function as NSCs. This new vertebrate model of adult neurogenesis is thus advancing our knowledge of the molecular cues in use for the activation of NSCs and fate of their progeny. Because the regenerative potential of somatic stem cells generally weakens with increasing age, it is important to assess the extent to which zebrafish NSC potential decreases or remains unaltered with age. We found that neurogenesis in the ventricular zone, in the olfactory bulb, and in a newly identified parenchymal zone of the telencephalon indeed declines as the fish ages and that oligodendrogenesis also declines. In the ventricular zone, the radial glial cell population remains largely unaltered morphologically but enters less frequently into the cell cycle and hence produces fewer neuroblasts. The neuroblasts themselves do not change their behavior with age and produce the same number of postmitotic neurons. Thus, decreased neurogenesis in the physiologically aging zebrafish brain is correlated with an increasing quiescence of radial glia. After injuries, radial glia in aged brains are reactivated, and the percentage of cell cycle entry is increased in the radial glia population. However, this reaction is far less pronounced than in younger animals, pointing to irreversible changes in aging zebrafish radial glia.


Assuntos
Envelhecimento , Lesões Encefálicas/patologia , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/fisiologia , Neuroglia/fisiologia , Telencéfalo/patologia , Fatores Etários , Animais , Animais Geneticamente Modificados , Bromodesoxiuridina/metabolismo , Contagem de Células , Modelos Animais de Doenças , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Proteína Semelhante a ELAV 3 , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
J Comp Neurol ; 519(9): 1748-69, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21452233

RESUMO

All subdivisions of the adult zebrafish brain maintain niches of constitutive neurogenesis, sustained by quiescent and multipotent progenitor populations. In the telencephalon, the latter potential neural stem cells take the shape of radial glia aligned along the ventricle and are controlled by Notch signalling. With the aim of identifying new markers of this cell type and of comparing the effectors of embryonic and adult neurogenesis, we focused on the family of hairy/enhancer of split [E(spl)] genes. We report the expression of seven hairy/E(spl) (her) genes and the new helt gene in three neurogenic areas of the adult zebrafish brain (telencephalon, hypothalamus, and midbrain) in relation to radial glia, proliferation, and neurogenesis. We show that the expression of most her genes in the adult brain characterizes quiescent radial glia, whereas only few are expressed in progenitor domains engaged in active proliferation or neurogenesis. The low proliferation status of most her-positive progenitors contrasts with the embryonic nervous system, in which her genes are expressed in actively dividing progenitors. Likewise, we demonstrate largely overlapping expression domains of a set of her genes in the adult brain, which is in striking contrast to their distinct embryonic expression profiles. Overall, our data provide a consolidated map of her expression, quiescent glia, proliferation, and neurogenesis in these various subdivisions of the adult brain and suggest distinct regulation and function of Her factors in the embryonic and adult contexts.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/metabolismo , Proteínas de Homeodomínio/biossíntese , Neurogênese/fisiologia , Proteínas de Peixe-Zebra/biossíntese , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/citologia , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Especificidade da Espécie , Telencéfalo/citologia , Telencéfalo/metabolismo , Fatores de Transcrição HES-1 , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
3.
J Neurosci ; 30(23): 7961-74, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20534844

RESUMO

The limited generation of neurons during adulthood is controlled by a balance between quiescence and recruitment of neural stem cells (NSCs). We use here the germinal zone of the zebrafish adult telencephalon to examine how the frequency of NSC divisions is regulated. We show, using several in vivo techniques, that progenitors transit back and forth between the quiescent and dividing state, according to varying levels of Notch activity: Notch induction drives progenitors into quiescence, whereas blocking Notch massively reinitiates NSC division and subsequent commitment toward becoming neurons. Notch activation appears predominantly triggered by newly recruited progenitors onto their neighbors, suggesting an involvement of Notch in a self-limiting mechanism, once neurogenesis is started. These results identify for the first time a lateral inhibition-like mechanism in the context of adult neurogenesis and suggest that the equilibrium between quiescence and neurogenesis in the adult brain is controlled by fluctuations of Notch activity, thereby regulating the amount of adult-born neurons.


Assuntos
Células-Tronco Adultas/metabolismo , Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Neurônios/metabolismo , Receptores Notch/metabolismo , Telencéfalo/citologia , Animais , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/genética , Proteínas S100/metabolismo , Peixe-Zebra
4.
Glia ; 58(7): 870-88, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20155821

RESUMO

The zebrafish has become a new model for adult neurogenesis, owing to its abundant neurogenic areas in most brain subdivisions. Radial glia-like cells, actively proliferating cells, and label-retaining progenitors have been described in these areas. In the telencephalon, this complexity is enhanced by an organization of the ventricular zone (VZ) in fast and slow-dividing domains, suggesting the existence of heterogeneous progenitor types. In this work, we studied the expression of various transgenic or immunocytochemical markers for glial cells (gfap:gfp, cyp19a1b:gfp, BLBP, and S100beta), progenitors (nestin:gfp and Sox2), and neuroblasts (PSA-NCAM) in cycling progenitors of the adult zebrafish telencephalon (identified by expression of proliferating cell nuclear antigen (PCNA), MCM5, or bromodeoxyuridine incorporation). We demonstrate the existence of distinct populations of dividing cells at the adult telencephalic VZ. Progenitors of the overall slow-cycling domains express high levels of Sox2 and nestin:gfp as well as all glial markers tested. In contrast, domains with an overall fast division rate are characterized by low or missing expression of glial markers. PCNA-positive cells in fast domains further display a morphology distinct from radial glia and co-express PSA-NCAM, suggesting that they are early neuronal precursors. In addition, the VZ contains cycling progenitors that express neither glial markers nor nestin:gfp, but are positive for Sox2 and PSA-NCAM, identifying them as committed neuroblasts. On the basis of the marker gene expression and distinct cell morphologies, we propose a classification for the dividing cell states at the zebrafish adult telencephalic VZ.


Assuntos
Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Células-Tronco/citologia , Telencéfalo/citologia , Peixe-Zebra/anatomia & histologia , Animais , Animais Geneticamente Modificados , Biomarcadores/análise , Biomarcadores/metabolismo , Divisão Celular/fisiologia , Proliferação de Células , Proteínas de Filamentos Intermediários/análise , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Ventrículos Laterais , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Molécula L1 de Adesão de Célula Nervosa/análise , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição SOX/análise , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Ácidos Siálicos/análise , Ácidos Siálicos/genética , Ácidos Siálicos/metabolismo , Células-Tronco/classificação , Células-Tronco/fisiologia , Telencéfalo/fisiologia , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/análise , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...