Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3309, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632272

RESUMO

Interactions between plasmons and exciton nanoemitters in plexcitonic systems lead to fast and intense luminescence, desirable in optoelectonic devices, ultrafast optical switches and quantum information science. While luminescence enhancement through exciton-plasmon coupling has thus far been mostly demonstrated in micro- and nanoscale structures, analogous demonstrations in bulk materials have been largely neglected. Here we present a bulk nanocomposite glass doped with cadmium telluride quantum dots (CdTe QDs) and silver nanoparticles, nAg, which act as exciton and plasmon sources, respectively. This glass exhibits ultranarrow, FWHM = 13 nm, and ultrafast, 90 ps, amplified photoluminescence (PL), λem≅503 nm, at room temperature under continuous-wave excitation, λexc = 405 nm. Numerical simulations confirm that the observed improvement in emission is a result of a multiscale light enhancement owing to the ensemble of QD-populated plasmonic nanocavities in the material. Power-dependent measurements indicate that >100 mW coherent light amplification occurs. These types of bulk plasmon-exciton composites could be designed comprising a plethora of components/functionalities, including emitters (QDs, rare earth and transition metal ions) and nanoplasmonic elements (Ag/Au/TCO, spherical/anisotropic/miscellaneous), to achieve targeted applications.

2.
Nano Lett ; 24(1): 238-244, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38164905

RESUMO

The strong-coupling interaction between quantum emitters and cavities provides the archetypical platform for fundamental quantum electrodynamics. Here we show that methylene blue (MB) molecules interact coherently with subwavelength plasmonic nanocavity modes at room temperature. Experimental results show that the strong coupling can be switched on and off reversibly when MB molecules undergo redox reactions which transform them to leuco-methylene blue molecules. In simulations we demonstrate the strong coupling between the second excited plasmonic cavity mode and resonant emitters. However, we also show that other detuned modes simultaneously couple efficiently to the molecular transitions, creating unusual cascades of mode spectral shifts and polariton formation. This is possible due to the relatively large plasmonic particle size resulting in reduced mode splittings. The results open significant potential for device applications utilizing active control of strong coupling.

3.
Nano Lett ; 23(24): 11387-11394, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-37906586

RESUMO

With a growing demand for detecting light at the single-photon level in various fields, researchers are focused on optimizing the performance of superconducting single-photon detectors (SSPDs) by using multiple approaches. However, input light coupling for visible light has remained a challenge in the development of efficient SSPDs. To overcome these limitations, we developed a novel system that integrates NbN superconducting microwire photon detectors (SMPDs) with gap-plasmon resonators to improve the photon detection efficiency to 98% while preserving all detector performance features, such as polarization insensitivity. The plasmonic SMPDs exhibit a hot-belt effect that generates a nonlinear photoresponse in the visible range operated at 9 K (∼0.64Tc), resulting in a 233-fold increase in phonon-electron interaction factor (γ) compared to pristine SMPDs at resonance under CW illumination. These findings open up new opportunities for ultrasensitive single-photon detection in areas like quantum information processing, quantum optics, imaging, and sensing at visible wavelengths.

4.
Opt Express ; 31(2): 2345-2358, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785250

RESUMO

Plasmonic nanocavities have emerged as a promising platform for next-generation spectroscopy, sensing and photonic quantum information processing technologies, benefiting from a unique confluence of nanoscale compactness and integrability, ultrafast functionality and room-temperature viability. Harnessing their unprecedented optical field confinement and enhancement properties for such diverse application domains, however, demands continued innovation in cavity design and robust strategies for engineering their plasmonic mode characteristics, with the aim of optimizing spatial and spectral matching conditions for strong light-matter interaction involving embedded quantum emitters. Adopting the canonical gold bowtie nanoantenna, we show that the complex refractive index, n + ik, of the substrate material provides additional design flexibility in tailoring the properties of plasmonic nanocavity modes, including their resonance wavelengths, hotspot locations, intracavity field polarization and radiative decay rates. In particular, we predict that highly refractive (n ≥ 4) or highly absorptive (k ≥ 4) substrates provide two complementary approaches to engineering nanocavity modes that are especially desirable for coupling two-dimensional quantum materials, featuring namely an elevated hotspot with a dominantly in-plane polarized near-field, as well as a strongly radiative character. Our study elucidates the benefits and intricacies of a largely unexplored facet of nanocavity mode manipulation, beyond the widely practiced synthetic control over the cavity topology or physical dimensions, and paves the way for plasmonic cavity quantum electrodynamics with two-dimensional excitonic matter.

5.
Nano Lett ; 22(7): 2801-2808, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35360907

RESUMO

For a quantum Internet, one needs reliable sources of entangled particles that are compatible with measurement techniques enabling time-dependent, quantum error correction. Ideally, they will be operable at room temperature with a manageable decoherence versus generation time. To accomplish this, we theoretically establish a scalable, plasmonically based archetype that uses quantum dots (QD) as quantum emitters, known for relatively low decoherence rates near room temperature, that are excited using subdiffracted light from a near-field transducer (NFT). NFTs are a developing technology that allow rasterization across arrays of qubits and remarkably generate enough power to strongly drive energy transitions on the nanoscale. This eases the fabrication of QD media, while efficiently controlling picosecond-scale dynamic entanglement of a multiqubit system that approaches maximum fidelity, along with fluctuation between tripartite and bipartite entanglement. Our strategy radically increases the scalability and accessibility of quantum information devices while permitting fault-tolerant quantum computing using time-repetition algorithms.

6.
Nano Lett ; 21(7): 3083-3091, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33761260

RESUMO

Monolayer transition metal dichalcogenides (TMDs), direct bandgap materials with an atomically thin nature, are promising materials for electronics and photonics, especially at highly scaled lateral dimensions. However, the characteristically low total absorption of photons in the monolayer TMD has become a challenge in the access to and realization of monolayer TMD-based high-performance optoelectronic functionalities and devices. Here, we demonstrate gate-tunable plasmonic phototransistors (photoFETs) that consist of monolayer molybdenum disulfide (MoS2) photoFETs integrated with the two-dimensional plasmonic crystals. The plasmonic photoFET has an ultrahigh photoresponsivity of 2.7 × 104 AW-1, achieving a 7.2-fold enhancement in the photocurrent compared to pristine photoFETs. This benefits predominately from the combination of the enhancement of the photon-absorption-rate via the strongly localized-electromagnetic-field and the gate-tunable plasmon-induced photocarrier-generation-rate in the monolayer MoS2. These results demonstrate a systematic methodology for designing ultrathin plasmon-enhanced photodetectors based on monolayer TMDs for next-generation ultracompact optoelectronic devices in the trans-Moore era.

7.
Science ; 371(6532): 948-952, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33632847

RESUMO

Random numbers are widely used for information security, cryptography, stochastic modeling, and quantum simulations. Key technical challenges for physical random number generation are speed and scalability. We demonstrate a method for ultrafast generation of hundreds of random bit streams in parallel with a single laser diode. Spatiotemporal interference of many lasing modes in a specially designed cavity is introduced as a scheme for greatly accelerated random bit generation. Spontaneous emission, caused by quantum fluctuations, produces stochastic noise that makes the bit streams unpredictable. We achieve a total bit rate of 250 terabits per second with off-line postprocessing, which is more than two orders of magnitude higher than the current postprocessing record. Our approach is robust, compact, and energy-efficient, with potential applications in secure communication and high-performance computation.

8.
J Phys Chem C Nanomater Interfaces ; 125(5): 3081-3087, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33613808

RESUMO

Understanding and controlling properties of plasmon-induced hot carriers is a key step toward next-generation photovoltaic and photocatalytic devices. Here, we uncover a route to engineering hot-carrier generation rates of silver nanoparticles by designed embedding in dielectric host materials. Extending our recently established quantum-mechanical approach to describe the decay of quantized plasmons into hot carriers we capture both external screening by the nanoparticle environment and internal screening by silver d-electrons through an effective electron-electron interaction. We find that hot-carrier generation can be maximized by engineering the dielectric host material such that the energy of the localized surface plasmon coincides with the highest value of the nanoparticle joint density of states. This allows us to uncover a path to control the energy of the carriers and the amount produced, for example, a large number of relatively low-energy carriers are obtained by embedding in strongly screening environments.

9.
Proc Natl Acad Sci U S A ; 117(26): 14819-14826, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541027

RESUMO

Plasmonic nanostructures can focus light far below the diffraction limit, and the nearly thousandfold field enhancements obtained routinely enable few- and single-molecule detection. However, for processes happening on the molecular scale to be tracked with any relevant time resolution, the emission strengths need to be well beyond what current plasmonic devices provide. Here, we develop hybrid nanostructures incorporating both refractive and plasmonic optics, by creating SiO2 nanospheres fused to plasmonic nanojunctions. Drastic improvements in Raman efficiencies are consistently achieved, with (single-wavelength) emissions reaching 107 counts⋅mW-1⋅s-1 and 5 × 105 counts∙mW-1∙s-1∙molecule-1, for enhancement factors >1011 We demonstrate that such high efficiencies indeed enable tracking of single gold atoms and molecules with 17-µs time resolution, more than a thousandfold improvement over conventional high-performance plasmonic devices. Moreover, the obtained (integrated) megahertz count rates rival (even exceed) those of luminescent sources such as single-dye molecules and quantum dots, without bleaching or blinking.

10.
Nano Lett ; 20(8): 5830-5836, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32574498

RESUMO

We report theoretical statistics of 1- and 2-qubit (bipartite) systems, namely, photon antibunching and entanglement, of near-field excited quantum emitters. The sub-diffraction focusing of a plasmonic waveguide is shown to generate enough power over a sufficiently small region (<50 × 50 nm2) to strongly drive quantum emitters. This enables ultrafast (10-14 s) single-photon emission as well as creates entangled states between two emitters when performing a controlled-NOT operation. A comparative analysis of silicon and near-zero index materials demonstrates advantages and uncovers challenges of embedding quantum emitters for single-photon emission and for bipartite entanglement. The use of a movable plasmonic waveguide, in lieu of stationary nanostructures, allows high-speed rasterization between sets of qubits and enables spatially flexible data storage and quantum information processing. Furthermore, the sub-diffraction focusing of the waveguide is shown to achieve cavity-free dynamic entanglement. This greatly reduces fabrication constraints and increases the speed and scalability of nanophotonic quantum devices.

11.
J Chem Phys ; 152(10): 104111, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171204

RESUMO

We present an approach to master the well-known challenge of calculating the contribution of d-bands to plasmon-induced hot carrier rates in metallic nanoparticles. We generalize the widely used spherical well model for the nanoparticle wavefunctions to flat d-bands using the envelope function technique. Using Fermi's golden rule, we calculate the generation rates of hot carriers after the decay of the plasmon due to transitions either from a d-band state to an sp-band state or from an sp-band state to another sp-band state. We apply this formalism to spherical silver nanoparticles with radii up to 20 nm and also study the dependence of hot carrier rates on the energy of the d-bands. We find that for nanoparticles with a radius less than 2.5 nm, sp-band state to sp-band state transitions dominate hot carrier production, while d-band state to sp-band state transitions give the largest contribution for larger nanoparticles.

12.
Proc Natl Acad Sci U S A ; 117(5): 2275-2281, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31941710

RESUMO

Plasmonics now delivers sensors capable of detecting single molecules. The emission enhancements and nanometer-scale optical confinement achieved by these metallic nanostructures vastly increase spectroscopic sensitivity, enabling real-time tracking. However, the interaction of light with such nanostructures typically loses all information about the spatial location of molecules within a plasmonic hot spot. Here, we show that ultrathin plasmonic nanogaps support complete mode sets which strongly influence the far-field emission patterns of embedded emitters and allow the reconstruction of dipole positions with 1-nm precision. Emitters in different locations radiate spots, rings, and askew halo images, arising from interference of 2 radiating antenna modes differently coupling light out of the nanogap, highlighting the imaging potential of these plasmonic "crystal balls." Emitters at the center are now found to live indefinitely, because they radiate so rapidly.

13.
J Phys Chem Lett ; 10(24): 7594-7602, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31769991

RESUMO

Semiconductor-metal hybrid nanostructures present an exotic class of nonlinear optical materials due to their potential optoelectronic applications. However, most studies to date focus on their total optical responses instead of contributions from individual nonlinear orders. In this Letter, we present a theoretical study on the third-order nonlinear optical absorption of a hybrid colloidal semiconductor quantum dot (SQD)-metal nanoparticle (MNP) system. We develop a novel analytic treatment based on the nonlinear density matrix equation and derive a closed-form expression for the optical susceptibility. Our study identifies the parameter space that governs the system's optical transition from being a saturable absorber to a Fano-enhanced absorber. We attribute this transition to the plasmon-mediated self-interaction of the SQD. The findings provide a valuable guideline for optimized designs of functional nanophotonic devices based on SQD-MNP hybrid structures.

14.
Opt Lett ; 44(21): 5378-5381, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675011

RESUMO

We demonstrate asymmetric transmission of light in hybrid waveguide-integrated plasmonic crystals where triangular silver islands create a regular array of nanogaps which couple to an underlying silicon-on-insulator optical waveguide. Up to 60% difference is observed between light transmission in the forward and backward directions. This asymmetric transmission of light is not caused by an external magnetic field or nonlinearity, but solely a consequence of the structure geometry.

15.
Nano Lett ; 19(9): 5853-5861, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31356753

RESUMO

Plasmon-polaritons are among the most promising candidates for next-generation optical sensors due to their ability to support extremely confined electromagnetic fields and empower strong coupling of light and matter. Here we propose quantum plasmonic immunoassay sensing as an innovative scheme, which embeds immunoassay sensing with recently demonstrated room-temperature strong coupling in nanoplasmonic cavities. In our protocol, the antibody-antigen-antibody complex is chemically linked with a quantum emitter label. Placing the quantum-emitter-enhanced antibody-antigen-antibody complexes inside or close to a nanoplasmonic (hemisphere dimer) cavity facilitates strong coupling between the plasmon-polaritons and the emitter label resulting in signature Rabi splitting. Through rigorous statistical analysis of multiple analytes randomly distributed on the substrate in extensive realistic computational experiments, we demonstrate a drastic enhancement of the sensitivity up to nearly 1500% compared to conventional shifting-type plasmonic sensors. Most importantly and in stark contrast to classical sensing, we achieve in the strong-coupling (quantum) sensing regime an enhanced sensitivity that is no longer dependent on the concentration of antibody-antigen-antibody complexes down to the single-analyte limit. The quantum plasmonic immunoassay scheme thus not only leads to the development of plasmonic biosensing for single molecules but also opens up new pathways toward room-temperature quantum sensing enabled by biomolecular inspired protocols linked with quantum nanoplasmonics.


Assuntos
Anticorpos/isolamento & purificação , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Nanotecnologia/métodos , Anticorpos/química , Ouro/química , Nanoestruturas/química , Pontos Quânticos/química , Ressonância de Plasmônio de Superfície
16.
Adv Mater ; 31(2): e1803478, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30393994

RESUMO

Optical metamaterials offer the tantalizing possibility of creating extraordinary optical properties through the careful design and arrangement of subwavelength structural units. Gyroid-structured optical metamaterials possess a chiral, cubic, and triply periodic bulk morphology that exhibits a redshifted effective plasma frequency. They also exhibit a strong linear dichroism, the origin of which is not yet understood. Here, the interaction of light with gold gyroid optical metamaterials is studied and a strong correlation between the surface morphology and its linear dichroism is found. The termination of the gyroid surface breaks the cubic symmetry of the bulk lattice and gives rise to the observed wavelength- and polarization-dependent reflection. The results show that light couples into both localized and propagating plasmon modes associated with anisotropic surface protrusions and the gaps between such protrusions. The localized surface modes give rise to the anisotropic optical response, creating the linear dichroism. Simulated reflection spectra are highly sensitive to minute details of these surface terminations, down to the nanometer level, and can be understood with analogy to the optical properties of a 2D anisotropic metasurface atop a 3D isotropic metamaterial. This pronounced sensitivity to the subwavelength surface morphology has significant consequences for both the design and application of optical metamaterials.

17.
Science ; 361(6408): 1225-1231, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30115744

RESUMO

Spatiotemporal instabilities are widespread phenomena resulting from complexity and nonlinearity. In broad-area edge-emitting semiconductor lasers, the nonlinear interactions of multiple spatial modes with the active medium can result in filamentation and spatiotemporal chaos. These instabilities degrade the laser performance and are extremely challenging to control. We demonstrate a powerful approach to suppress spatiotemporal instabilities using wave-chaotic or disordered cavities. The interference of many propagating waves with random phases in such cavities disrupts the formation of self-organized structures such as filaments, resulting in stable lasing dynamics. Our method provides a general and robust scheme to prevent the formation and growth of nonlinear instabilities for a large variety of high-power lasers.

18.
Sci Adv ; 4(3): eaar4906, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29511739

RESUMO

Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.

19.
J Phys Condens Matter ; 30(6): 064003, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29286288

RESUMO

Introduction of a gain medium in lossy plasmonic metamaterials reduces and compensates losses or even amplifies an incident light often with nonlinear optical effect. Here, optical gain in a pump-probe experimental setup is effectively calculated in the frequency-domain by approximating a gain material as an inhomogeneous medium. Spatially varying local field amplitudes of the pump and probe beams are included in the model to reproduce the inhomogeneous gain effect, in which population inversion occurs most strongly near the surface and decays along the propagation direction. We demonstrate that transmission spectra calculated by this method agree well with finite-difference time-domain simulation results. This simplified approach of gain modelling offers an easy and reliable way to analyze wave propagation in a gain medium without nonlinear time-domain calculation.

20.
Nano Lett ; 18(1): 405-411, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29166033

RESUMO

Fabricating nanocavities in which optically active single quantum emitters are precisely positioned is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single molecules laterally within sub-5 nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore and obtain enhancements of ≥4 × 103 with high quantum yield (≥50%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of ±1.5 nm. Our approach introduces a straightforward noninvasive way to measure and quantify confined optical modes on the nanoscale.


Assuntos
Carbocianinas/química , DNA/química , Corantes Fluorescentes/química , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Nanopartículas Metálicas/ultraestrutura , Nanoestruturas/ultraestrutura , Nanotecnologia , Óptica e Fotônica , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...