Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chest ; 163(3): 669-677, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36368615

RESUMO

BACKGROUND: Pulmonary arteriovenous malformations (PAVMs) are direct connections between the pulmonary artery and the pulmonary vein, mostly associated with hereditary hemorrhagic telangiectasia (HHT). PAVMs can lead to severe neurologic complications such as stroke and brain abscess. The risk of complications decreases after embolization. Therefore, screening for PAVMs using transthoracic contrast echocardiography (TTCE) is recommended, including a rescreening interval of 5 years. RESEARCH QUESTION: Is extension of the interval for rescreening patients without a pulmonary right-to-left shunt (RLS) of up to 10 years appropriate? STUDY DESIGN AND METHODS: Adult patients with HHT with 5- or 10-year follow-up TTCE, or both, were included. Patients who underwent PAVM embolization in the past or at baseline were excluded. The RLS grades and presence of a treatable PAVM were compared with baseline. RESULTS: In total, 387 patients (median age, 45 years [interquartile range, 33-54 years]; 56% women) involving 5- and 10-year follow-up data in 363 and 166 patients, respectively, were included. None of the patients (n = 148) without a pulmonary RLS at baseline demonstrated a treatable PAVM after 5 and 10 years. Of the patients with a pulmonary RLS at baseline, 20 patients (9%) and three patients (3%) demonstrated a treatable PAVM at the 5- and 10-year follow-up, respectively. In most patients, the RLS grade remained stable over time. INTERPRETATION: On the basis of the results of this retrospective study, we believe that the rescreening interval for patients with HHT without a pulmonary RLS at initial screening may be extended to 10 years. Those with a pulmonary RLS should be rescreened every 5 years because treatable PAVMs can evolve.


Assuntos
Malformações Arteriovenosas , Embolização Terapêutica , Veias Pulmonares , Telangiectasia Hemorrágica Hereditária , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Veias Pulmonares/diagnóstico por imagem , Veias Pulmonares/anormalidades , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/anormalidades , Estudos Retrospectivos , Malformações Arteriovenosas/complicações , Malformações Arteriovenosas/diagnóstico por imagem , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/diagnóstico por imagem , Ecocardiografia/métodos , Embolização Terapêutica/métodos
2.
Nature ; 602(7898): 585-589, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35197615

RESUMO

Fast radio bursts (FRBs) are flashes of unknown physical origin1. The majority of FRBs have been seen only once, although some are known to generate multiple flashes2,3. Many models invoke magnetically powered neutron stars (magnetars) as the source of the emission4,5. Recently, the discovery6 of another repeater (FRB 20200120E) was announced, in the direction of the nearby galaxy M81, with four potential counterparts at other wavelengths6. Here we report observations that localized the FRB to a globular cluster associated with M81, where it is 2 parsecs away from the optical centre of the cluster. Globular clusters host old stellar populations, challenging FRB models that invoke young magnetars formed in a core-collapse supernova. We propose instead that FRB 20200120E originates from a highly magnetized neutron star formed either through the accretion-induced collapse of a white dwarf, or the merger of compact stars in a binary system7. Compact binaries are efficiently formed inside globular clusters, so a model invoking them could also be responsible for the observed bursts.

3.
Nature ; 583(7815): 211-214, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32641814

RESUMO

The discovery of a radioactively powered kilonova associated with the binary neutron-star merger GW170817 remains the only confirmed electromagnetic counterpart to a gravitational-wave event1,2. Observations of the late-time electromagnetic emission, however, do not agree with the expectations from standard neutron-star merger models. Although the large measured ejecta mass3,4 could be explained by a progenitor system that is asymmetric in terms of the stellar component masses (that is, with a mass ratio q of 0.7 to 0.8)5, the known Galactic population of merging double neutron-star systems (that is, those that will coalesce within billions of years or less) has until now consisted only of nearly equal-mass (q > 0.9) binaries6. The pulsar PSR J1913+1102 is a double system in a five-hour, low-eccentricity (0.09) orbit, with an orbital separation of 1.8 solar radii7, and the two neutron stars are predicted to coalesce in [Formula: see text] million years owing to gravitational-wave emission. Here we report that the masses of the pulsar and the companion neutron star, as measured by a dedicated pulsar timing campaign, are 1.62 ± 0.03 and 1.27 ± 0.03 solar masses, respectively. With a measured mass ratio of q = 0.78 ± 0.03, this is the most asymmetric merging system reported so far. On the basis of this detection, our population synthesis analysis implies that such asymmetric binaries represent between 2 and 30 per cent (90 per cent confidence) of the total population of merging binaries. The coalescence of a member of this population offers a possible explanation for the anomalous properties of GW170817, including the observed kilonova emission from that event.

4.
Nature ; 577(7789): 190-194, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31907402

RESUMO

Fast radio bursts (FRBs) are brief, bright, extragalactic radio flashes1,2. Their physical origin remains unknown, but dozens of possible models have been postulated3. Some FRB sources exhibit repeat bursts4-7. Although over a hundred FRB sources have been discovered8, only four have been localized and associated with a host galaxy9-12, and just one of these four is known to emit repeating FRBs9. The properties of the host galaxies, and the local environments of FRBs, could provide important clues about their physical origins. The first known repeating FRB, however, was localized to a low-metallicity, irregular dwarf galaxy, and the apparently non-repeating sources were localized to higher-metallicity, massive elliptical or star-forming galaxies, suggesting that perhaps the repeating and apparently non-repeating sources could have distinct physical origins. Here we report the precise localization of a second repeating FRB source6, FRB 180916.J0158+65, to a star-forming region in a nearby (redshift 0.0337 ± 0.0002) massive spiral galaxy, whose properties and proximity distinguish it from all known hosts. The lack of both a comparably luminous persistent radio counterpart and a high Faraday rotation measure6 further distinguish the local environment of FRB 180916.J0158+65 from that of the single previously localized repeating FRB source, FRB 121102. This suggests that repeating FRBs may have a wide range of luminosities, and originate from diverse host galaxies and local environments.

5.
Nature ; 568(7752): 360-363, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30996312

RESUMO

Lightning is a dangerous yet poorly understood natural phenomenon. Lightning forms a network of plasma channels propagating away from the initiation point with both positively and negatively charged ends-called positive and negative leaders1. Negative leaders propagate in discrete steps, emitting copious radio pulses in the 30-300-megahertz frequency band2-8 that can be remotely sensed and imaged with high spatial and temporal resolution9-11. Positive leaders propagate more continuously and thus emit very little high-frequency radiation12. Radio emission from positive leaders has nevertheless been mapped13-15, and exhibits a pattern that is different from that of negative leaders11-13,16,17. Furthermore, it has been inferred that positive leaders can become transiently disconnected from negative leaders9,12,16,18-20, which may lead to current pulses that both reconnect positive leaders to negative leaders11,16,17,20-22 and cause multiple cloud-to-ground lightning events1. The disconnection process is thought to be due to negative differential resistance18, but this does not explain why the disconnections form primarily on positive leaders22, or why the current in cloud-to-ground lightning never goes to zero23. Indeed, it is still not understood how positive leaders emit radio-frequency radiation or why they behave differently from negative leaders. Here we report three-dimensional radio interferometric observations of lightning over the Netherlands with unprecedented spatiotemporal resolution. We find small plasma structures-which we call 'needles'-that are the dominant source of radio emission from the positive leaders. These structures appear to drain charge from the leader, and are probably the reason why positive leaders disconnect from negative ones, and why cloud-to-ground lightning connects to the ground multiple times.

6.
Nature ; 553(7687): 182-185, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29323297

RESUMO

Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source-FRB 121102-has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source. The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from +1.46 × 105 radians per square metre to +1.33 × 105 radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole. The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula or supernova remnant surrounding a young neutron star.

7.
Nature ; 541(7635): 58-61, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28054614

RESUMO

Fast radio bursts are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients. So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources or the presence of peculiar field stars or galaxies. These attempts have not resulted in an unambiguous association with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source, using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with non-thermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts and tidal disruption events. However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that direct subarcsecond localizations may be the only way to provide reliable associations.

9.
Mon Not R Astron Soc ; 459(3): 2681-2689, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27279782

RESUMO

The eclipses of certain types of binary millisecond pulsars (i.e. 'black widows' and 'redbacks') are often studied using high-time-resolution, 'beamformed' radio observations. However, they may also be detected in images generated from interferometric data. As part of a larger imaging project to characterize the variable and transient sky at radio frequencies <200 MHz, we have blindly detected the redback system PSR J2215+5135 as a variable source of interest with the Low-Frequency Array (LOFAR). Using observations with cadences of two weeks - six months, we find preliminary evidence that the eclipse duration is frequency dependent (∝ν-0.4), such that the pulsar is eclipsed for longer at lower frequencies, in broad agreement with beamformed studies of other similar sources. Furthermore, the detection of the eclipses in imaging data suggests an eclipsing medium that absorbs the pulsed emission, rather than scattering it. Our study is also a demonstration of the prospects of finding pulsars in wide-field imaging surveys with the current generation of low-frequency radio telescopes.

10.
Mon Not R Astron Soc ; 459(3): 3161-3174, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27279785

RESUMO

We report on the results of a search for radio transients between 115 and 190 MHz with the LOw-Frequency ARray (LOFAR). Four fields have been monitored with cadences between 15 min and several months. A total of 151 images were obtained, giving a total survey area of 2275 deg2. We analysed our data using standard LOFAR tools and searched for radio transients using the LOFAR Transients Pipeline. No credible radio transient candidate has been detected; however, we are able to set upper limits on the surface density of radio transient sources at low radio frequencies. We also show that low-frequency radio surveys are more sensitive to steep-spectrum coherent transient sources than GHz radio surveys. We used two new statistical methods to determine the upper limits on the transient surface density. One is free of assumptions on the flux distribution of the sources, while the other assumes a power-law distribution in flux and sets more stringent constraints on the transient surface density. Both of these methods provide better constraints than the approach used in previous works. The best value for the upper limit we can set for the transient surface density, using the method assuming a power-law flux distribution, is 1.3 × 10-3 deg-2 for transients brighter than 0.3 Jy with a time-scale of 15 min, at a frequency of 150 MHz. We also calculated for the first time upper limits for the transient surface density for transients of different time-scales. We find that the results can differ by orders of magnitude from previously reported, simplified estimates.

11.
Nature ; 531(7592): 70-3, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26935696

RESUMO

Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 10(17)-10(18) electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate air showers--cascades of secondary particles in the atmosphere-and their masses can be inferred from measurements of the atmospheric depth of the shower maximum (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground. Current measurements have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 10(17)-10(17.5) electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 10(17.5) electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 10(17)-10(17.5) electronvolt range.

12.
Nature ; 531(7593): 202-5, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26934226

RESUMO

Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

13.
Phys Rev Lett ; 115(4): 041101, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26252674

RESUMO

The paucity of observed supermassive black hole binaries (SMBHBs) may imply that the gravitational wave background (GWB) from this population is anisotropic, rendering existing analyses suboptimal. We present the first constraints on the angular distribution of a nanohertz stochastic GWB from circular, inspiral-driven SMBHBs using the 2015 European Pulsar Timing Array data. Our analysis of the GWB in the ~2-90 nHz band shows consistency with isotropy, with the strain amplitude in l>0 spherical harmonic multipoles ≲40% of the monopole value. We expect that these more general techniques will become standard tools to probe the angular distribution of source populations.

14.
Phys Rev Lett ; 114(16): 165001, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25955053

RESUMO

We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.

15.
Nature ; 505(7484): 520-4, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24390352

RESUMO

Gravitationally bound three-body systems have been studied for hundreds of years and are common in our Galaxy. They show complex orbital interactions, which can constrain the compositions, masses and interior structures of the bodies and test theories of gravity, if sufficiently precise measurements are available. A triple system containing a radio pulsar could provide such measurements, but the only previously known such system, PSR B1620-26 (refs 7, 8; with a millisecond pulsar, a white dwarf, and a planetary-mass object in an orbit of several decades), shows only weak interactions. Here we report precision timing and multiwavelength observations of PSR J0337+1715, a millisecond pulsar in a hierarchical triple system with two other stars. Strong gravitational interactions are apparent and provide the masses of the pulsar M[Symbol: see text](1.4378(13), where M[Symbol: see text]is the solar mass and the parentheses contain the uncertainty in the final decimal places) and the two white dwarf companions (0.19751(15)M[Symbol: see text] and 0.4101(3))M[Symbol: see text], as well as the inclinations of the orbits (both about 39.2°). The unexpectedly coplanar and nearly circular orbits indicate a complex and exotic evolutionary past that differs from those of known stellar systems. The gravitational field of the outer white dwarf strongly accelerates the inner binary containing the neutron star, and the system will thus provide an ideal laboratory in which to test the strong equivalence principle of general relativity.

16.
Nature ; 501(7468): 517-20, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24067710

RESUMO

It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.

17.
Science ; 339(6118): 436-9, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23349288

RESUMO

Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the emission sites. Through simultaneous observations, we detected synchronous switching in the radio and x-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio-"bright" mode, the x-rays show only an unpulsed, nonthermal component. Conversely, when the pulsar is in a radio-"quiet" mode, the x-ray luminosity more than doubles and a 100% pulsed thermal component is observed along with the nonthermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories.

18.
Br J Dermatol ; 168(6): 1252-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23320892

RESUMO

BACKGROUND: Hidradenitis suppurativa (HS) is a chronic inflammatory and debilitating disease of the skin. No biomarkers for this disease exist. OBJECTIVES: We set out to test whether angiotensin-converting enzyme (ACE), lysozyme, soluble interleukin 2 receptor (sIL-2R) and S100A8/A9 (calprotectin) are elevated in patients with HS. METHODS: Serum was collected from 29 patients with HS at different stages of the disease, and from 51 controls. ACE, lysozyme, sIL-2R and S100A8/A9 levels were measured. Clinical observation of disease activity was scored according to the Hurley grading system and by a physician global score (PGS) of disease severity. RESULTS: Serum levels of lysozyme and ACE were not increased above the normal reference values in controls or patients with HS. Levels of sIL-2R and S100A8/A9 were significantly higher in patients with HS than in controls (P<0·001 for both sIL-2R and S100A8/A9). Based on the receiver operating characteristic curves, the optimum sIL-2R and S100A8/A9 cut-off values were 375 U mL(-1) and 680 ng mL(-1), respectively, with a sensitivity of 0·79 and specificity of 0·78 for sIL-2R, and 0·86 and 0·88, respectively, for S100A8/A9. No correlations with Hurley classification scores were found. However, when using PGS of disease activity to categorize patients, levels of S100A8/A9, but not sIL-2R, tended to be higher in patients with more active disease. CONCLUSIONS: Levels of S100A8/A9 and sIL-2R, but not ACE or lysozyme, are elevated in the serum of patients with HS. However, there is no correlation between S100A8/A9 or sIL-2R levels and disease stage according to the Hurley classification system. Further research is needed to study the potential of S100A8/A9 to score disease activity in larger cohorts of patients and to predict disease flares.


Assuntos
Biomarcadores/sangue , Calgranulina A/sangue , Calgranulina B/sangue , Hidradenite Supurativa/diagnóstico , Receptores de Interleucina-2/sangue , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Hidradenite Supurativa/sangue , Humanos , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Muramidase/metabolismo , Células Mieloides/metabolismo , Peptidil Dipeptidase A/sangue , Curva ROC , Adulto Jovem
19.
Nature ; 467(7319): 1081-3, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20981094

RESUMO

Neutron stars are composed of the densest form of matter known to exist in our Universe, the composition and properties of which are still theoretically uncertain. Measurements of the masses or radii of these objects can strongly constrain the neutron star matter equation of state and rule out theoretical models of their composition. The observed range of neutron star masses, however, has hitherto been too narrow to rule out many predictions of 'exotic' non-nucleonic components. The Shapiro delay is a general-relativistic increase in light travel time through the curved space-time near a massive body. For highly inclined (nearly edge-on) binary millisecond radio pulsar systems, this effect allows us to infer the masses of both the neutron star and its binary companion to high precision. Here we present radio timing observations of the binary millisecond pulsar J1614-2230 that show a strong Shapiro delay signature. We calculate the pulsar mass to be (1.97 ± 0.04)M(⊙), which rules out almost all currently proposed hyperon or boson condensate equations of state (M(⊙), solar mass). Quark matter can support a star this massive only if the quarks are strongly interacting and are therefore not 'free' quarks.

20.
Science ; 329(5997): 1305, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20705813

RESUMO

Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 192 countries to mine large data sets. It has now found a 40.8-hertz isolated pulsar in radio survey data from the Arecibo Observatory taken in February 2007. Additional timing observations indicate that this pulsar is likely a disrupted recycled pulsar. PSR J2007+2722's pulse profile is remarkably wide with emission over almost the entire spin period; the pulsar likely has closely aligned magnetic and spin axes. The massive computing power provided by volunteers should enable many more such discoveries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...