Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Sci Adv ; 10(20): eadn2136, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758799

RESUMO

Monocytes are immune regulators implicated in the pathogenesis of type 1 diabetes (T1D), an autoimmune disease that targets insulin-producing pancreatic ß cells. We determined that monocytes of recent onset (RO) T1D patients and their healthy siblings express proinflammatory/cytolytic transcriptomes and hypersecrete cytokines in response to lipopolysaccharide exposure compared to unrelated healthy controls (uHCs). Flow cytometry measured elevated circulating abundances of intermediate monocytes and >2-fold more CD14+CD16+HLADR+KLRD1+PRF1+ NK-like monocytes among patients with ROT1D compared to uHC. The intermediate to nonclassical monocyte ratio among ROT1D patients correlated with the decline in functional ß cell mass during the first 24 months after onset. Among sibling nonprogressors, temporal decreases were measured in the intermediate to nonclassical monocyte ratio and NK-like monocyte abundances; these changes coincided with increases in activated regulatory T cells. In contrast, these monocyte populations exhibited stability among T1D progressors. This study associates heightened monocyte proinflammatory/cytolytic activity with T1D susceptibility and progression and offers insight to the age-dependent decline in T1D susceptibility.


Assuntos
Diabetes Mellitus Tipo 1 , Progressão da Doença , Monócitos , Humanos , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/genética , Monócitos/metabolismo , Monócitos/imunologia , Masculino , Feminino , Adolescente , Criança , Adulto , Citocinas/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Adulto Jovem , Estudos de Casos e Controles
2.
Am J Respir Cell Mol Biol ; 70(2): 94-109, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37874230

RESUMO

Oxidative stress, inflammation, and endoplasmic reticulum (ER) stress sequentially occur in bronchopulmonary dysplasia (BPD), and all result in DNA damage. When DNA damage becomes irreparable, tumor suppressors increase, followed by apoptosis or senescence. Although cellular senescence contributes to wound healing, its persistence inhibits growth. Therefore, we hypothesized that cellular senescence contributes to BPD progression. Human autopsy lungs were obtained. Sprague-Dawley rat pups exposed to 95% oxygen between Postnatal Day 1 (P1) and P10 were used as the BPD phenotype. N-acetyl-lysyltyrosylcysteine-amide (KYC), tauroursodeoxycholic acid (TUDCA), and Foxo4 dri were administered intraperitoneally to mitigate myeloperoxidase oxidant generation, ER stress, and cellular senescence, respectively. Lungs were examined by histology, transcriptomics, and immunoblotting. Cellular senescence increased in rat and human BPD lungs, as evidenced by increased oxidative DNA damage, tumor suppressors, GL-13 stain, and inflammatory cytokines with decreased cell proliferation and lamin B expression. Cellular senescence-related transcripts in BPD rat lungs were enriched at P10 and P21. Single-cell RNA sequencing showed increased cellular senescence in several cell types, including type 2 alveolar cells. In addition, Foxo4-p53 binding increased in BPD rat lungs. Daily TUDCA or KYC, administered intraperitoneally, effectively decreased cellular senescence, improved alveolar complexity, and partially maintained the numbers of type 2 alveolar cells. Foxo4 dri administered at P4, P6, P8, and P10 led to outcomes similar to TUDCA and KYC. Our data suggest that cellular senescence plays an essential role in BPD after initial inducement by hyperoxia. Reducing myeloperoxidase toxic oxidant production, ER stress, and attenuating cellular senescence are potential therapeutic strategies for halting BPD progression.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Ácido Tauroquenodesoxicólico , Recém-Nascido , Animais , Ratos , Humanos , Displasia Broncopulmonar/patologia , Hiperóxia/metabolismo , Ratos Sprague-Dawley , Pulmão/patologia , Senescência Celular , Peroxidase/metabolismo , Oxidantes , Animais Recém-Nascidos , Modelos Animais de Doenças
3.
Gut Microbes ; 14(1): 2136467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36261888

RESUMO

The increasing incidence of Type 1 diabetes has coincided with the emergence of the low-fiber, high-gluten Western diet and other environmental factors linked to dysbiosis. Since Lactiplantibacillus plantarum 299 v (Lp299v) supplementation improves gut barrier function and reduces systemic inflammation, we studied its effects in spontaneously diabetic DRlyp/lyp rats provided a normal cereal diet (ND) or a gluten-free hydrolyzed casein diet (HCD). All rats provided ND developed diabetes (62.5±7.7 days); combining ND with Lp299v did not improve survival. Diabetes was delayed by HCD (72.2±9.4 days, p = .01) and further delayed by HCD+Lp299v (84.9±14.3 days, p < .001). HCD+Lp299v pups exhibited increased plasma propionate and butyrate levels, which correlated with enriched fecal Bifidobacteriaceae and Clostridiales taxa. Islet transcriptomic and histologic analyses at 40-days of age revealed that rats fed HCD expressed an autophagy profile, while those provided HCD+Lp299v expressed ER-associated protein degradation (ERAD) and antioxidative defense pathways, including Nrf2. Exposing insulinoma cells to propionate and butyrate promoted the antioxidative defense response but did not recapitulate the HCD+Lp299v islet ERAD transcriptomic profile. Here, both diet and microbiota influenced diabetes susceptibility. Moreover, Lp299v supplement modulated antioxidative defense and ER stress responses in ß-cells, potentially offering a new therapeutic direction to thwart diabetes progression and preserve insulin secretion.


Assuntos
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Lactobacillus plantarum , Ratos , Animais , Diabetes Mellitus Tipo 1/prevenção & controle , Diabetes Mellitus Tipo 1/metabolismo , Fator 2 Relacionado a NF-E2 , Antioxidantes , Caseínas , Propionatos , Suplementos Nutricionais , Butiratos
4.
PLoS One ; 17(8): e0269564, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36018859

RESUMO

Myeloperoxidase (MPO), oxidative stress (OS), and endoplasmic reticulum (ER) stress are increased in the lungs of rat pups raised in hyperoxia, an established model of bronchopulmonary dysplasia (BPD). However, the relationship between OS, MPO, and ER stress has not been examined in hyperoxia rat pups. We treated Sprague-Dawley rat pups with tunicamycin or hyperoxia to determine this relationship. ER stress was detected using immunofluorescence, transcriptomic, proteomic, and electron microscopic analyses. Immunofluorescence observed increased ER stress in the lungs of hyperoxic rat BPD and human BPD. Proteomic and morphometric studies showed that tunicamycin directly increased ER stress of rat lungs and decreased lung complexity with a BPD phenotype. Previously, we showed that hyperoxia initiates a cycle of destruction that we hypothesized starts from increasing OS through MPO accumulation and then increases ER stress to cause BPD. To inhibit ER stress, we used tauroursodeoxycholic acid (TUDCA), a molecular chaperone. To break the cycle of destruction and reduce OS and MPO, we used N-acetyl-lysyltyrosylcysteine amide (KYC). The fact that TUDCA improved lung complexity in tunicamycin- and hyperoxia-treated rat pups supports the idea that ER stress plays a causal role in BPD. Additional support comes from data showing TUDCA decreased lung myeloid cells and MPO levels in the lungs of tunicamycin- and hyperoxia-treated rat pups. These data link OS and MPO to ER stress in the mechanisms mediating BPD. KYC's inhibition of ER stress in the tunicamycin-treated rat pup's lung provides additional support for the idea that MPO-induced ER stress plays a causal role in the BPD phenotype. ER stress appears to expand our proposed cycle of destruction. Our results suggest ER stress evolves from OS and MPO to increase neonatal lung injury and impair growth and development. The encouraging effect of TUDCA indicates that this compound has the potential for treating BPD.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Pneumonia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Humanos , Recém-Nascido , Pulmão , Proteômica , Ratos , Ratos Sprague-Dawley , Tunicamicina
5.
JCI Insight ; 7(6)2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35315363

RESUMO

Cystic fibrosis (CF) is an inherited disorder caused by biallelic mutations of the CF transmembrane conductance regulator (CFTR) gene. Converging evidence suggests that CF carriers with only 1 defective CFTR copy are at increased risk for CF-related conditions and pulmonary infections, but the molecular mechanisms underpinning this effect remain unknown. We performed transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) of CF child-parent trios (proband, father, and mother) and healthy control (HC) PBMCs or THP-1 cells incubated with the plasma of these participants. Transcriptomic analyses revealed suppression of cytokine-enriched immune-related genes (IL-1ß, CXCL8, CREM), implicating lipopolysaccharide tolerance in innate immune cells (monocytes) of CF probands and their parents. These data suggest that a homozygous as well as a heterozygous CFTR mutation can modulate the immune/inflammatory system. This conclusion is further supported by the finding of lower numbers of circulating monocytes in CF probands and their parents, compared with HCs, and the abundance of mononuclear phagocyte subsets, which correlated with Pseudomonas aeruginosa infection, lung disease severity, and CF progression in the probands. This study provides insight into demonstrated CFTR-related innate immune dysfunction in individuals with CF and carriers of a CFTR mutation that may serve as a target for personalized therapy.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Macrófagos , Monócitos , Fibrose Cística/genética , Fibrose Cística/imunologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Leucócitos Mononucleares , Macrófagos/patologia , Monócitos/patologia , Pais
6.
Sci Rep ; 12(1): 3306, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228584

RESUMO

The incidence of type 1 diabetes (T1D) has increased, coinciding with lifestyle changes that have likely altered the gut microbiota. Dysbiosis, gut barrier dysfunction, and elevated systemic inflammation consistent with microbial antigen exposure, have been associated with T1D susceptibility and progression. A 6-week, single-arm, open-label pilot trial was conducted to investigate whether daily multi-strain probiotic supplementation could reduce this familial inflammation in 25 unaffected siblings of T1D patients. Probiotic supplementation was well-tolerated as reflected by high participant adherence and no adverse events. Community alpha and beta diversity were not altered between the pre- and post-supplement stool samplings. However, LEfSe analyses identified post-supplement enrichment of the family Lachnospiraceae, producers of the anti-inflammatory short chain fatty acid butyrate. Systemic inflammation was measured by plasma-induced transcription and quantified with a gene ontology-based composite inflammatory index (I.I.com). Post-supplement I.I.com was significantly reduced and pathway analysis predicted inhibition of numerous inflammatory mediators and activation of IL10RA. Subjects with the greatest post-supplement reduction in I.I.com exhibited significantly lower CD4+ CD45RO+ (memory):CD4+ CD45RA+ (naïve) T-cell ratios after supplementation. Post-supplement IL-12p40, IL-13, IL-15, IL-18, CCL2, and CCL24 plasma levels were significantly reduced, while post-supplement butyrate levels trended 1.4-fold higher. Probiotic supplementation may modify T1D susceptibility and progression and warrants further study.


Assuntos
Diabetes Mellitus Tipo 1 , Probióticos , Diabetes Mellitus Tipo 1/terapia , Humanos , Inflamação , Projetos Piloto , Probióticos/uso terapêutico , Irmãos
7.
Front Immunol ; 13: 1015855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703975

RESUMO

Introduction: Previous studies verify the formation of enzymatically post-translationally modified (PTM) self-peptides and their preferred recognition by T cells in subjects with type 1 diabetes (T1D). However, questions remain about the relative prevalence of T cells that recognize PTM self-peptides derived from different antigens, their functional phenotypes, and whether their presence correlates with a specific disease endotype. Methods: To address this question, we identified a cohort of subjects with T1D who had diverse levels of residual beta cell function. Using previously developed HLA class II tetramer reagents, we enumerated T cells that recognize PTM GAD epitopes in the context of DRB1*04:01 or PTM IA2 epitopes in the context of DQB1*03:02 (DQ8). Results: Consistent with prior studies, we observed higher overall frequencies and a greater proportion of memory T cells in subjects with T1D than in HLA matched controls. There were significantly higher numbers of GAD specific T cells than IA2 specific T cells in subjects with T1D. T cells specific for both groups of epitopes could be expanded from the peripheral blood of subjects with established T1D and at-risk subjects. Expanded neo-epitope specific T cells primarily produced interferon gamma in both groups, but a greater proportion of T cells were interferon gamma positive in subjects with T1D, including some poly-functional cells that also produced IL-4. Based on direct surface phenotyping, neo-epitope specific T cells exhibited diverse combinations of chemokine receptors. However, the largest proportion had markers associated with a Th1-like phenotype. Notably, DQ8 restricted responses to PTM IA2 were over-represented in subjects with lower residual beta cell function. Neo-epitope specific T cells were present in at-risk subjects, and those with multiple autoantibodies have higher interferon gamma to IL-4 ratios than those with single autoantibodies, suggesting a shift in polarization during progression. Discussion: These results reinforce the relevance of PTM neo-epitopes in human disease and suggest that distinct responses to neo-antigens promote a more rapid decline in beta cell function.


Assuntos
Diabetes Mellitus Tipo 1 , Linfócitos T , Humanos , Autoanticorpos , Epitopos , Interferon gama , Interleucina-4 , Peptídeos , Linfócitos T/imunologia
8.
Sci Rep ; 11(1): 3972, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597583

RESUMO

Recent trials demonstrate that systemic anti-inflammatory therapy reduces cardiovascular events in coronary artery disease (CAD) patients. We recently demonstrated Lactobacillus plantarum 299v (Lp299v) supplementation improved vascular endothelial function in men with stable CAD. Whether this favorable effect is in part due to anti-inflammatory action remains unknown. Testing this hypothesis, we exposed plasma obtained before and after Lp299v supplementation from these subjects to a healthy donor's PBMCs and measured differences in the PBMC transciptome, performed gene ontological analyses, and compared Lp299v-induced transcriptome changes with changes in vascular function. Daily alcohol users (DAUs) (n = 4) had a significantly different response to Lp299v and were separated from the main analyses. Non-DAUs- (n = 15) showed improved brachial flow-mediated dilation (FMD) and reduced circulating IL-8, IL-12, and leptin. 997 genes were significantly changed. I.I.com decreased (1.01 ± 0.74 vs. 0.22 ± 0.51; P < 0.0001), indicating strong anti-inflammatory effects. Pathway analyses revealed downregulation of IL-1ß, interferon-stimulated pathways, and toll-like receptor signaling, and an increase in regulator T-cell (Treg) activity. Reductions in GBP1, JAK2, and TRAIL expression correlated with improved FMD. In non-DAU men with stable CAD, post-Lp299v supplementation plasma induced anti-inflammatory transcriptome changes in human PBMCs that could benefit CAD patients. Future studies should delineate changes in circulating metabolites responsible for these effects.


Assuntos
Doença da Artéria Coronariana/tratamento farmacológico , Lactobacillus plantarum/metabolismo , Probióticos/farmacologia , Idoso , Anti-Inflamatórios/farmacologia , Artéria Braquial/efeitos dos fármacos , Artéria Braquial/metabolismo , Doença da Artéria Coronariana/imunologia , Suplementos Nutricionais , Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Lactobacillus plantarum/genética , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Transcriptoma/efeitos dos fármacos
9.
JCI Insight ; 6(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33301420

RESUMO

Transient partial remission, a period of low insulin requirement experienced by most patients soon after diagnosis, has been associated with mechanisms of immune regulation. A better understanding of such natural mechanisms of immune regulation might identify new targets for immunotherapies that reverse type 1 diabetes (T1D). In this study, using Cox model multivariate analysis, we validated our previous findings that patients with the highest frequency of CD4+CD25+CD127hi (127-hi) cells at diagnosis experience the longest partial remission, and we showed that the 127-hi cell population is a mix of Th1- and Th2-type cells, with a significant bias toward antiinflammatory Th2-type cells. In addition, we extended these findings to show that patients with the highest frequency of 127-hi cells at diagnosis were significantly more likely to maintain ß cell function. Moreover, in patients treated with alefacept in the T1DAL clinical trial, the probability of responding favorably to the antiinflammatory drug was significantly higher in those with a higher frequency of 127-hi cells at diagnosis than those with a lower 127-hi cell frequency. These data are consistent with the hypothesis that 127-hi cells maintain an antiinflammatory environment that is permissive for partial remission, ß cell survival, and response to antiinflammatory immunotherapy.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Subpopulações de Linfócitos T/imunologia , Adolescente , Adulto , Alefacept/uso terapêutico , Linfócitos T CD4-Positivos/classificação , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/terapia , Progressão da Doença , Feminino , Humanos , Imunoterapia/métodos , Lactente , Subunidade alfa de Receptor de Interleucina-2/sangue , Subunidade alfa de Receptor de Interleucina-7/sangue , Masculino , Análise Multivariada , Modelos de Riscos Proporcionais , Subpopulações de Linfócitos T/classificação , Adulto Jovem
10.
JCI Insight ; 5(16)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32814707

RESUMO

Type 1 diabetes (T1D) is a consequence of autoimmune ß cell destruction, but the role of lipids in this process is unknown. We previously reported that activation of Ca2+-independent phospholipase A2ß (iPLA2ß) modulates polarization of macrophages (MΦ). Hydrolysis of the sn-2 substituent of glycerophospholipids by iPLA2ß can lead to the generation of oxidized lipids (eicosanoids), pro- and antiinflammatory, which can initiate and amplify immune responses triggering ß cell death. As MΦ are early triggers of immune responses in islets, we examined the impact of iPLA2ß-derived lipids (iDLs) in spontaneous-T1D prone nonobese diabetic mice (NOD), in the context of MΦ production and plasma abundances of eicosanoids and sphingolipids. We find that (a) MΦNOD exhibit a proinflammatory lipid landscape during the prediabetic phase; (b) early inhibition or genetic reduction of iPLA2ß reduces production of select proinflammatory lipids, promotes antiinflammatory MΦ phenotype, and reduces T1D incidence; (c) such lipid changes are reflected in NOD plasma during the prediabetic phase and at T1D onset; and (d) importantly, similar lipid signatures are evidenced in plasma of human subjects at high risk for developing T1D. These findings suggest that iDLs contribute to T1D onset and identify select lipids that could be targeted for therapeutics and, in conjunction with autoantibodies, serve as early biomarkers of pre-T1D.


Assuntos
Biomarcadores/metabolismo , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/etiologia , Metabolismo dos Lipídeos , Macrófagos Peritoneais/metabolismo , Adolescente , Animais , Criança , Diabetes Mellitus Tipo 1/terapia , Eicosanoides/metabolismo , Ácidos Graxos/metabolismo , Feminino , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Fosfolipases A2 do Grupo IV/metabolismo , Humanos , Cetonas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Macrófagos Peritoneais/patologia , Macrófagos Peritoneais/transplante , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Naftalenos/farmacologia
12.
Diabetes Care ; 43(1): 5-12, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31753960

RESUMO

The clinical diagnosis of new-onset type 1 diabetes has, for many years, been considered relatively straightforward. Recently, however, there is increasing awareness that within this single clinical phenotype exists considerable heterogeneity: disease onset spans the complete age range; genetic susceptibility is complex; rates of progression differ markedly, as does insulin secretory capacity; and complication rates, glycemic control, and therapeutic intervention efficacy vary widely. Mechanistic and immunopathological studies typically show considerable patchiness across subjects, undermining conclusions regarding disease pathways. Without better understanding, type 1 diabetes heterogeneity represents a major barrier both to deciphering pathogenesis and to the translational effort of designing, conducting, and interpreting clinical trials of disease-modifying agents. This realization comes during a period of unprecedented change in clinical medicine, with increasing emphasis on greater individualization and precision. For complex disorders such as type 1 diabetes, the option of maintaining the "single disease" approach appears untenable, as does the notion of individualizing each single patient's care, obliging us to conceptualize type 1 diabetes less in terms of phenotypes (observable characteristics) and more in terms of disease endotypes (underlying biological mechanisms). Here, we provide our view on an approach to dissect heterogeneity in type 1 diabetes. Using lessons from other diseases and the data gathered to date, we aim to delineate a roadmap through which the field can incorporate the endotype concept into laboratory and clinical practice. We predict that such an effort will accelerate the implementation of precision medicine and has the potential for impact on our approach to translational research, trial design, and clinical management.


Assuntos
Variação Biológica da População/fisiologia , Diabetes Mellitus Tipo 1/classificação , Diabetes Mellitus Tipo 1/patologia , Fenótipo , Glicemia/metabolismo , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/terapia , Progressão da Doença , Humanos , Insulina/metabolismo , Medicina de Precisão/métodos , Medicina de Precisão/tendências
13.
JCI Insight ; 4(23)2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31671072

RESUMO

At diagnosis, most people with type 1 diabetes (T1D) produce measurable levels of endogenous insulin, but the rate at which insulin secretion declines is heterogeneous. To explain this heterogeneity, we sought to identify a composite signature predictive of insulin secretion, using a collaborative assay evaluation and analysis pipeline that incorporated multiple cellular and serum measures reflecting ß cell health and immune system activity. The ability to predict decline in insulin secretion would be useful for patient stratification for clinical trial enrollment or therapeutic selection. Analytes from 12 qualified assays were measured in shared samples from subjects newly diagnosed with T1D. We developed a computational tool (DIFAcTO, Data Integration Flexible to Account for different Types of data and Outcomes) to identify a composite panel associated with decline in insulin secretion over 2 years following diagnosis. DIFAcTO uses multiple filtering steps to reduce data dimensionality, incorporates error estimation techniques including cross-validation and sensitivity analysis, and is flexible to assay type, clinical outcome, and disease setting. Using this novel analytical tool, we identified a panel of immune markers that, in combination, are highly associated with loss of insulin secretion. The methods used here represent a potentially novel process for identifying combined immune signatures that predict outcomes relevant for complex and heterogeneous diseases like T1D.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/imunologia , Progressão da Doença , Secreção de Insulina/fisiologia , Adolescente , Adulto , Criança , Biologia Computacional , Feminino , Humanos , Hipoglicemiantes/farmacologia , Imunoterapia/métodos , Células Secretoras de Insulina/metabolismo , Masculino , Adulto Jovem
14.
Am J Respir Cell Mol Biol ; 61(3): 301-311, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30848661

RESUMO

Cystic fibrosis (CF) is caused by mutations of the gene encoding the CF transmembrane conductance regulator. It remains unclear whether the abnormal immune response in CF involves extrinsic signals released from the external or internal environment. We sought to characterize the peripheral immune signatures in CF and its association with clinical phenotypes. Healthy peripheral blood mononuclear cells (PBMCs) were cultured with plasma from CF probands (CFPs) or healthy control subjects (HCs) followed by nCounter gene and microRNA (miRNA) profiling. A discovery cohort of 12 CFPs and 12 HCs and a validation cohort of 103 CFPs and 31 HCs (our previous microarray data [GSE71799]) were analyzed to characterize the composition of cultured immune cells and establish a miRNA‒mRNA network. Cell compositions and miRNA profiles were associated with clinical characteristics of the cohorts. Significantly differentially expressed genes and abundance of myeloid cells were downregulated in PMBCs after culture with CF plasma (P < 0.05). Top-ranked miRNAs that increased in response to CF plasma (adjusted P < 0.05) included miR-155 and miR-146a, which target many immune-related genes, such as IL-8. Pseudomonas aeruginosa infection was negatively associated with abundance of monocytes and the presence of those regulatory miRNAs. Extrinsic signals in plasma from patients with CF led to monocyte inactivation and miRNA upregulation in PBMCs. An improved understanding of the immune effects of extrinsic factors in CF holds great promise for integrating immunomodulatory cell therapies into current treatment strategies in CF.


Assuntos
Infecções Bacterianas/imunologia , Fibrose Cística/microbiologia , Leucócitos Mononucleares/microbiologia , Monócitos/microbiologia , Infecções por Pseudomonas/imunologia , Células Cultivadas , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Pulmão/imunologia , Pulmão/microbiologia , MicroRNAs/genética , Plasma/microbiologia , Pseudomonas aeruginosa/imunologia
15.
Cancer Epidemiol Biomarkers Prev ; 28(4): 680-689, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30530849

RESUMO

BACKGROUND: Despite the accessibility of blood, identification of systemic biomarkers associated with cancer progression has been especially challenging. The aim of this study was to determine a difference in baseline serum immune signatures in patients that experienced early pancreatic ductal adenocarcinoma (PDAC) metastasis compared with patients that did not. We hypothesized that immune mediators would differ in the baseline serum of these patient cohorts. To test this hypothesis, novel approaches of systemic immune analysis were performed. METHODS: A serum-induced transcriptional assay was used to identify transcriptome signatures. To enable an understanding of the transcriptome data in a global sense, a transcriptome index was calculated for each patient taking into consideration the relationship of up- and downregulated transcripts. For each patient, serum cytokine concentrations were also analyzed globally as a cytokine index (CI). RESULTS: A transcriptome signature of innate type I IFN inflammation was identified in patients that experienced early metastatic progression. Patients without early metastatic progression had a baseline transcriptome signature of TGFß/IL10-regulated acute inflammation. The transcriptome index was greater in patients with early metastasis. There was a significant difference in the CI in patients with and without early metastatic progression. CONCLUSIONS: The association of serum-induced transcriptional signatures with PDAC metastasis is a novel finding. Global assessment of serum cytokine concentrations as a CI is a novel approach to assess systemic cancer immunity. IMPACT: These systemic indices can be assessed in combination with tumor markers to further define subsets of PDAC that will provide insight into effective treatment, progression, and outcome.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Citocinas/genética , Transcriptoma/genética , Progressão da Doença , Feminino , Humanos , Masculino , Metástase Neoplásica , Prognóstico
16.
Physiol Genomics ; 51(1): 27-41, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30540547

RESUMO

Although cystic fibrosis (CF) is attributed to dysfunction of a single gene, the relationships between the abnormal gene product and the development of inflammation and progression of lung disease are not fully understood, which limits our ability to predict an individual patient's clinical course and treatment response. To better understand CF progression, we characterized the molecular signatures of CF disease status with plasma-based functional genomics. Peripheral blood mononuclear cells (PBMCs) from healthy donors were cultured with plasma samples from CF patients ( n = 103) and unrelated, healthy controls ( n = 31). Gene expression levels were measured with an Affymetrix microarray (GeneChip Human Genome U133 Plus 2.0). Peripheral blood samples from a subset of the CF patients ( n = 40) were immunophenotyped by flow cytometry, and the data were compared with historical data for age-matched healthy controls ( n = 351). Plasma samples from another subset of CF patients ( n = 56) and healthy controls ( n = 16) were analyzed by multiplex enzyme-linked immunosorbent assay (ELISA) for numerous cytokines and chemokines. Principal component analysis and hierarchical clustering of induced transcriptional data revealed disease-specific plasma-induced PBMC profiles. Among 1,094 differentially expressed probe sets, 51 genes were associated with pancreatic sufficient status, and 224 genes were associated with infection with Pseudomonas aeruginosa. The flow cytometry and ELISA data confirmed that various immune modulators are relevant contributors to the CF molecular signature. This study provides strong evidence for distinct molecular signatures among CF patients. An understanding of these molecular signatures may lead to unique molecular markers that will enable more personalized prognoses, individualized treatment plans, and rapid monitoring of treatment response.


Assuntos
Fibrose Cística/sangue , Fibrose Cística/genética , Plasma/metabolismo , Transcriptoma/genética , Adolescente , Adulto , Doadores de Sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Citocinas/sangue , Feminino , Genótipo , Humanos , Imunofenotipagem , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Neutrófilos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Espécies Reativas de Oxigênio/metabolismo , Adulto Jovem
17.
Diabetologia ; 61(11): 2356-2370, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30167736

RESUMO

AIMS/HYPOTHESIS: The study aimed to determine whether discrete subtypes of type 1 diabetes exist, based on immunoregulatory profiles at clinical onset, as this has significant implications for disease treatment and prevention as well as the design and analysis of clinical trials. METHODS: Using a plasma-based transcriptional bioassay and a gene-ontology-based scoring algorithm, we examined local participants from the Children's Hospital of Wisconsin and conducted an ancillary analysis of TrialNet CTLA4-Ig trial (TN-09) participants. RESULTS: The inflammatory/regulatory balance measured during the post-onset period was highly variable. Notably, a significant inverse relationship was identified between baseline innate inflammatory activity and stimulated C-peptide AUC measured at 3, 6, 12, 18 and 24 months post onset among placebo-treated individuals (p ≤ 0.015). Further, duration of persistent insulin secretion was negatively related to baseline inflammation (p ≤ 0.012) and positively associated with baseline abundance of circulating activated regulatory T cells (CD4+/CD45RA-/FOXP3high; p = 0.016). Based on these findings, data from participants treated with CTLA4-Ig were stratified by inflammatory activity at onset; in this way, we identified pathways and transcripts consistent with inhibition of T cell activation and enhanced immunoregulation. Variance among baseline plasma-induced signatures of TN-09 participants was further examined with weighted gene co-expression network analysis and related to clinical metrics. Four age-independent subgroups were identified that differed in terms of baseline innate inflammatory/regulatory bias, rate of C-peptide decline and response to CTLA4-Ig treatment. CONCLUSIONS/INTERPRETATION: These data support the existence of multiple type 1 diabetes subtypes characterised by varying levels of baseline innate inflammation that are associated with the rate of C-peptide decline. DATA AVAILABILITY: Gene expression data files are publicly available through the National Center for Biotechnology Information Gene Expression Omnibus (accession number GSE102234).


Assuntos
Abatacepte/uso terapêutico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/imunologia , Imunidade Inata/fisiologia , Adolescente , Adulto , Criança , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/mortalidade , Feminino , Citometria de Fluxo , Humanos , Imunidade Inata/genética , Secreção de Insulina/efeitos dos fármacos , Estimativa de Kaplan-Meier , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Adulto Jovem
18.
PLoS One ; 13(2): e0193687, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474459

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0181242.].

19.
PLoS One ; 13(1): e0190351, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293587

RESUMO

Environmental changes associated with modern lifestyles may underlie the rising incidence of Type 1 diabetes (T1D). Our previous studies of T1D families and the BioBreeding (BB) rat model have identified a peripheral inflammatory state that is associated with diabetes susceptibility, consistent with pattern recognition receptor ligation, but is independent of disease progression. Here, compared to control strains, islets of spontaneously diabetic BB DRlyp/lyp and diabetes inducible BB DR+/+ weanlings provided a standard cereal diet expressed a robust proinflammatory transcriptional program consistent with microbial antigen exposure that included numerous cytokines/chemokines. The dependence of this phenotype on diet and gastrointestinal microbiota was investigated by transitioning DR+/+ weanlings to a gluten-free hydrolyzed casein diet (HCD) or treating them with antibiotics to alter/reduce pattern recognition receptor ligand exposure. Bacterial 16S rRNA gene sequencing revealed that these treatments altered the ileal and cecal microbiota, increasing the Firmicutes:Bacteriodetes ratio and the relative abundances of lactobacilli and butyrate producing taxa. While these conditions did not normalize the inherent hyper-responsiveness of DR+/+ rat leukocytes to ex vivo TLR stimulation, they normalized plasma cytokine levels, plasma TLR4 activity levels, the proinflammatory islet transcriptome, and ß-cell chemokine expression. In lymphopenic DRlyp/lyp rats, HCD reduced T1D incidence, and the introduction of gluten to this diet induced islet chemokine expression and abrogated protection from diabetes. Overall, these studies link BB rat islet-level immunocyte recruiting potential, as measured by ß-cell chemokine expression, to a genetically controlled immune hyper-responsiveness and innate inflammatory state that can be modulated by diet and the intestinal microbiota.


Assuntos
Quimiocinas/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Dieta , Microbioma Gastrointestinal , Inflamação/prevenção & controle , Ilhotas Pancreáticas/metabolismo , Animais , Citocinas/sangue , Perfilação da Expressão Gênica , Imunidade Inata , Inflamação/imunologia , Mediadores da Inflamação/sangue , Ratos , Ratos Endogâmicos F344 , Transcrição Gênica
20.
PLoS One ; 12(8): e0181242, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28854209

RESUMO

OBJECTIVE: Tumor cells that escape local tissue control can convert inflammatory cells from tumor suppressors to tumor promoters. Moreover, soluble immune-modulating factors secreted from the tumor environment can be difficult to identify in patient serum due to their low abundance. We used an alternative strategy to infer a metastatic signature induced by sera of cervical cancer patients. METHODS: Sera from patients with local and metastatic cervical cancer were used to induce a disease-specific transcriptional signature in cultured, healthy peripheral blood mononuclear cells (PBMCs). An empirical Bayesian method, EBarrays, was used to identify differentially expressed (DE) genes with a target false discovery rate of <5%. Ingenuity Pathway Analysis (IPA) software was used to detect the top molecular and cellular functions associated with the DE genes. IPA and in silco analysis was used to pinpoint candidate upstream regulators, including cancer-related microRNAs (miRNAs). RESULTS: We identified enriched pathways in the metastatic cervical group related to immune surveillance functions, such as downregulation of engulfment, accumulation, and phagocytosis of hematopoietic cells. The predicted top upstream genes were IL-10 and immunoglobulins. In silco analysis identified miRNAs predicted to drive the transcriptional signature. Two of the 4 miRNAs (miR-23a-3p and miR-944) were validated in a cohort of women with local and metastatic cervical cancer. CONCLUSIONS: This study supports the use of a cell-based assay that uses PBMC "reporters" to predict biologically relevant factors in patient serum. Further, disease-specific transcriptional signatures induced by patient sera have the potential to differentiate patients with local versus metastatic disease.


Assuntos
Colo do Útero/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Adulto , Teorema de Bayes , Células Cultivadas , Estudos de Coortes , Feminino , Humanos , Imunoglobulinas/sangue , Imunoglobulinas/genética , Interleucina-10/sangue , Interleucina-10/genética , Leucócitos Mononucleares/metabolismo , MicroRNAs/sangue , Pessoa de Meia-Idade , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Neoplasias do Colo do Útero/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...