Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 32(8)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33142269

RESUMO

We have analyzed the electron-phonon coupling in GaN/AlN core-shell nanowires by means of Raman scattering excited at various wavelengths in the ultraviolet spectral range (335, 325 and 300 nm) and as a function of the AlN shell thickness. The detailed analysis of the multi-phonon spectra evidences important differences with excitation energy. Under 325 and 300 nm excitation the Raman process is mediated by the allowedA1(LO) phonon mode, where the atoms vibrate along the NW axis. Considering its selection rules, this mode is easily accessible in backscattering along the wurtzitecaxis. Interestingly, for 335 nm excitation the scattering process is instead mediated by theE1(LO) phonon mode, where atoms vibrate in thec-plane and that is forbidden in this configuration. This change is ascribed to the band anticrossing caused by the uniaxial strain imposed by the AlN shell and the proximity, at this particular excitation energy, of real electronic transitions separated by the energy of the longitudinal optical phonon modes. The energy and character of the electronic bands can be tuned by varying the AlN shell thickness, a degree of freedom unique to core-shell nanowires. The interpretation of the experimental results is supported by calculations of the electronic transitions of GaN under uniaxial strain performed within the framework of ak · pmodel.

2.
Nanotechnology ; 23(42): 425703, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23037990

RESUMO

Medium energy ion spectroscopy experiments have been performed on an ensemble of nanowires deposited by molecular beam epitaxy on Si(111), taking advantage of their reduced in-plane mosaicity. In particular, the strain in nanometric GaN insertions embedded in AlN sections deposited on top of GaN nanowires has been determined. The measured strain is consistent with atomistic valence force field calculations. This opens the way for the structural study of a new range of discontinuous nanowire-based nanostructures by medium energy ion spectroscopy and to the determination of the strain profile of nanodisks in nanowires at the monolayer scale.

3.
Nanotechnology ; 21(41): 415702, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20844326

RESUMO

The growth and structural properties of GaN/AlN core-shell nanowire heterostructures have been studied using a combination of resonant x-ray diffraction, Raman spectroscopy and high resolution transmission electron microscopy experiments. For a GaN core of 20 nm diameter on average surrounded by a homogeneous AlN shell, the built-in strain in GaN is found to agree with theoretical calculations performed using a valence force field model. It is then concluded that for an AlN thickness up to at least 12 nm both core and shell are in elastic equilibrium. However, in the case of an inhomogeneous growth of the AlN shell caused by the presence of steps on the sides of the GaN core, plastic relaxation is found to occur. Consistent with the presence of dislocations at the GaN/AlN interface, it is proposed that this plastic relaxation, especially efficient for AlN shell thickness above 3 nm, is promoted by the shear strain induced by the AlN inhomogeneity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA