Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Mol Genet Genomic Med ; 11(10): e2237, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37496383

RESUMO

INTRODUCTION: The frequency and implications of secondary findings (SFs) from genomic testing data have been extensively researched. However, little is known about the frequency or reporting of SFs in Africans, who are underrepresented in large-scale population genomic studies. The availability of data from the first whole-genome sequencing for orofacial clefts in an African population motivated this investigation. METHODS: In total, 130 case-parent trios were analyzed for SFs within the ACMG SFv.3.0 list genes. Additionally, we filtered for four more genes (HBB, HSD32B, G6PD and ACADM). RESULTS: We identified 246 unique variants in 55 genes; five variants in four genes were classified as pathogenic or likely pathogenic (P/LP). The P/LP variants were seen in 2.3% (9/390) of the subjects, a frequency higher than ~1% reported for diverse ethnicities. On the ACMG list, pathogenic variants were observed in PRKAG (p. Glu183Lys). Variants in the PALB2 (p. Glu159Ter), RYR1 (p. Arg2163Leu) and LDLR (p. Asn564Ser) genes were predicted to be LP. CONCLUSION: This study provides information on the frequency and pathogenicity of SFs in an African cohort. Early risk detection will help reduce disease burden and contribute to efforts to increase knowledge of the distribution and impact of actionable genomic variants in diverse populations.


Assuntos
Fenda Labial , Fissura Palatina , Humanos , Predisposição Genética para Doença , Fenda Labial/genética , Fissura Palatina/genética , Genômica , África Subsaariana/epidemiologia
2.
Cleft Palate Craniofac J ; : 10556656221135926, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384317

RESUMO

Novel or rare damaging mutations have been implicated in the developmental pathogenesis of nonsyndromic cleft lip with or without cleft palate (nsCL ± P). Thus, we investigated the human genome for high-impact mutations that could explain the risk of nsCL ± P in our cohorts.We conducted next-generation sequencing (NGS) analysis of 130 nsCL ± P case-parent African trios to identify pathogenic variants that contribute to the risk of clefting. We replicated this analysis using whole-exome sequence data from a Brazilian nsCL ± P cohort. Computational analyses were then used to predict the mechanism by which these variants could result in increased risks for nsCL ± P.We discovered damaging mutations within the AFDN gene, a cell adhesion molecule (CAMs) that was previously shown to contribute to cleft palate in mice. These mutations include p.Met1164Ile, p.Thr453Asn, p.Pro1638Ala, p.Arg669Gln, p.Ala1717Val, and p.Arg1596His. We also discovered a novel splicing p.Leu1588Leu mutation in this protein. Computational analysis suggests that these amino acid changes affect the interactions with other cleft-associated genes including nectins (PVRL1, PVRL2, PVRL3, and PVRL4) CDH1, CTNNA1, and CTNND1.This is the first report on the contribution of AFDN to the risk for nsCL ± P in humans. AFDN encodes AFADIN, an important CAM that forms calcium-independent complexes with nectins 1 and 4 (encoded by the genes PVRL1 and PVRL4). This discovery shows the power of NGS analysis of multiethnic cleft samples in combination with a computational approach in the understanding of the pathogenesis of nsCL ± P.

3.
Sci Rep ; 12(1): 11743, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817949

RESUMO

The majority (85%) of nonsyndromic cleft lip with or without cleft palate (nsCL/P) cases occur sporadically, suggesting a role for de novo mutations (DNMs) in the etiology of nsCL/P. To identify high impact protein-altering DNMs that contribute to the risk of nsCL/P, we conducted whole-genome sequencing (WGS) analyses in 130 African case-parent trios (affected probands and unaffected parents). We identified 162 high confidence protein-altering DNMs some of which are based on available evidence, contribute to the risk of nsCL/P. These include novel protein-truncating DNMs in the ACTL6A, ARHGAP10, MINK1, TMEM5 and TTN genes; as well as missense variants in ACAN, DHRS3, DLX6, EPHB2, FKBP10, KMT2D, RECQL4, SEMA3C, SEMA4D, SHH, TP63, and TULP4. Many of these protein-altering DNMs were predicted to be pathogenic. Analysis using mouse transcriptomics data showed that some of these genes are expressed during the development of primary and secondary palate. Gene-set enrichment analysis of the protein-altering DNMs identified palatal development and neural crest migration among the few processes that were significantly enriched. These processes are directly involved in the etiopathogenesis of clefting. The analysis of the coding sequence in the WGS data provides more evidence of the opportunity for novel findings in the African genome.


Assuntos
Fenda Labial , Fissura Palatina , Animais , Encéfalo/anormalidades , Fenda Labial/genética , Fissura Palatina/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Camundongos , Mutação , Polimorfismo de Nucleotídeo Único
4.
PLoS Genet ; 17(7): e1009584, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34242216

RESUMO

Based on epidemiologic and embryologic patterns, nonsyndromic orofacial clefts- the most common craniofacial birth defects in humans- are commonly categorized into cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP), which are traditionally considered to be etiologically distinct. However, some evidence of shared genetic risk in IRF6, GRHL3 and ARHGAP29 regions exists; only FOXE1 has been recognized as significantly associated with both CL/P and CP in genome-wide association studies (GWAS). We used a new statistical approach, PLACO (pleiotropic analysis under composite null), on a combined multi-ethnic GWAS of 2,771 CL/P and 611 CP case-parent trios. At the genome-wide significance threshold of 5 × 10-8, PLACO identified 1 locus in 1q32.2 (IRF6) that appears to increase risk for one OFC subgroup but decrease risk for the other. At a suggestive significance threshold of 10-6, we found 5 more loci with compelling candidate genes having opposite effects on CL/P and CP: 1p36.13 (PAX7), 3q29 (DLG1), 4p13 (LIMCH1), 4q21.1 (SHROOM3) and 17q22 (NOG). Additionally, we replicated the recognized shared locus 9q22.33 (FOXE1), and identified 2 loci in 19p13.12 (RAB8A) and 20q12 (MAFB) that appear to influence risk of both CL/P and CP in the same direction. We found locus-specific effects may vary by racial/ethnic group at these regions of genetic overlap, and failed to find evidence of sex-specific differences. We confirmed shared etiology of the two OFC subtypes comprising CL/P, and additionally found suggestive evidence of differences in their pathogenesis at 2 loci of genetic overlap. Our novel findings include 6 new loci of genetic overlap between CL/P and CP; 3 new loci between pairwise OFC subtypes; and 4 loci not previously implicated in OFCs. Our in-silico validation showed PLACO is robust to subtype-specific effects, and can achieve massive power gains over existing approaches for identifying genetic overlap between disease subtypes. In summary, we found suggestive evidence for new genetic regions and confirmed some recognized OFC genes either exerting shared risk or with opposite effects on risk to OFC subtypes.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Pleiotropia Genética , Biologia Computacional , Simulação por Computador , Etnicidade , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Reprodutibilidade dos Testes
5.
Front Cell Dev Biol ; 9: 621018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937227

RESUMO

Two large studies of case-parent trios ascertained through a proband with a non-syndromic orofacial cleft (OFC, which includes cleft lip and palate, cleft lip alone, or cleft palate alone) were used to test for possible gene-environment (G × E) interaction between genome-wide markers (both observed and imputed) and self-reported maternal exposure to smoking, alcohol consumption, and multivitamin supplementation during pregnancy. The parent studies were as follows: GENEVA, which included 1,939 case-parent trios recruited largely through treatment centers in Europe, the United States, and Asia, and 1,443 case-parent trios from the Pittsburgh Orofacial Cleft Study (POFC) also ascertained through a proband with an OFC including three major racial/ethnic groups (European, Asian, and Latin American). Exposure rates to these environmental risk factors (maternal smoking, alcohol consumption, and multivitamin supplementation) varied across studies and among racial/ethnic groups, creating substantial differences in power to detect G × E interaction, but the trio design should minimize spurious results due to population stratification. The GENEVA and POFC studies were analyzed separately, and a meta-analysis was conducted across both studies to test for G × E interaction using the 2 df test of gene and G × E interaction and the 1 df test for G × E interaction alone. The 2 df test confirmed effects for several recognized risk genes, suggesting modest G × E effects. This analysis did reveal suggestive evidence for G × Vitamin interaction for CASP9 on 1p36 located about 3 Mb from PAX7, a recognized risk gene. Several regions gave suggestive evidence of G × E interaction in the 1 df test. For example, for G × Smoking interaction, the 1 df test suggested markers in MUSK on 9q31.3 from meta-analysis. Markers near SLCO3A1 also showed suggestive evidence in the 1 df test for G × Alcohol interaction, and rs41117 near RETREG1 (a.k.a. FAM134B) also gave suggestive significance in the meta-analysis of the 1 df test for G × Vitamin interaction. While it remains quite difficult to obtain definitive evidence for G × E interaction in genome-wide studies, perhaps due to small effect sizes of individual genes combined with low exposure rates, this analysis of two large case-parent trio studies argues for considering possible G × E interaction in any comprehensive study of complex and heterogeneous disorders such as OFC.

6.
Am J Hum Genet ; 107(1): 124-136, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32574564

RESUMO

Although de novo mutations (DNMs) are known to increase an individual's risk of congenital defects, DNMs have not been fully explored regarding orofacial clefts (OFCs), one of the most common human birth defects. Therefore, whole-genome sequencing of 756 child-parent trios of European, Colombian, and Taiwanese ancestry was performed to determine the contributions of coding DNMs to an individual's OFC risk. Overall, we identified a significant excess of loss-of-function DNMs in genes highly expressed in craniofacial tissues, as well as genes associated with known autosomal dominant OFC syndromes. This analysis also revealed roles for zinc-finger homeobox domain and SOX2-interacting genes in OFC etiology.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Predisposição Genética para Doença/genética , Mutação/genética , Povo Asiático/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , População Branca/genética , Sequenciamento Completo do Genoma/métodos
7.
Hum Genet ; 139(2): 215-226, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31848685

RESUMO

Orofacial clefts (OFCs) are among the most prevalent craniofacial birth defects worldwide and create a significant public health burden. The majority of OFCs are non-syndromic, and the genetic etiology of non-syndromic OFCs is only partially determined. Here, we analyze whole genome sequence (WGS) data for association with risk of OFCs in European and Colombian families selected from a multicenter family-based OFC study. This is the first large-scale WGS study of OFC in parent-offspring trios, and a part of the Gabriella Miller Kids First Pediatric Research Program created for the study of childhood cancers and structural birth defects. WGS provides deeper and more specific genetic data than using imputation on present-day single nucleotide polymorphic (SNP) marker panels. Genotypes of case-parent trios at single nucleotide variants (SNV) and short insertions and deletions (indels) spanning the entire genome were called from their sequences using human GRCh38 genome assembly, and analyzed for association using the transmission disequilibrium test. Among genome-wide significant associations, we identified a new locus on chromosome 21 in Colombian families, not previously observed in other larger OFC samples of Latin American ancestry. This locus is situated within a region known to be expressed during craniofacial development. Based on deeper investigation of this locus, we concluded that it contributed risk for OFCs exclusively in the Colombians. This study reinforces the ancestry differences seen in the genetic etiology of OFCs, and underscores the need for larger samples when studying for OFCs and other birth defects in populations with diverse ancestry.


Assuntos
Cromossomos Humanos Par 21/genética , Fenda Labial/genética , Fissura Palatina/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , População Branca/genética , Sequenciamento Completo do Genoma/métodos , Criança , Colômbia , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino
8.
Genet Epidemiol ; 43(1): 37-49, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30246882

RESUMO

We previously demonstrated how sharing of rare variants (RVs) in distant affected relatives can be used to identify variants causing a complex and heterogeneous disease. This approach tested whether single RVs were shared by all sequenced affected family members. However, as with other study designs, joint analysis of several RVs (e.g., within genes) is sometimes required to obtain sufficient statistical power. Further, phenocopies can lead to false negatives for some causal RVs if complete sharing among affected is required. Here, we extend our methodology (Rare Variant Sharing, RVS) to address these issues. Specifically, we introduce gene-based analyses, a partial sharing test based on RV sharing probabilities for subsets of affected relatives and a haplotype-based RV definition. RVS also has the desirable feature of not requiring external estimates of variant frequency or control samples, provides functionality to assess and address violations of key assumptions, and is available as open source software for genome-wide analysis. Simulations including phenocopies, based on the families of an oral cleft study, revealed the partial and complete sharing versions of RVS achieved similar statistical power compared with alternative methods (RareIBD and the Gene-Based Segregation Test), and had superior power compared with the pedigree Variant Annotation, Analysis, and Search Tool (pVAAST) linkage statistic. In studies of multiplex cleft families, analysis of rare single nucleotide variants in the exome of 151 affected relatives from 54 families revealed no significant excess sharing in any one gene, but highlighted different patterns of sharing revealed by the complete and partial sharing tests.


Assuntos
Predisposição Genética para Doença , Variação Genética , Linhagem , Análise de Sequência de DNA , Fissura Palatina/genética , Simulação por Computador , Exoma/genética , Heterogeneidade Genética , Haplótipos/genética , Humanos , Modelos Genéticos , Fenótipo , Probabilidade , Fatores de Risco , Sequenciamento do Exoma
9.
Mol Genet Genomic Med ; 5(5): 570-579, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28944239

RESUMO

BACKGROUND: Nonsyndromic oral clefts are craniofacial malformations, which include cleft lip with or without cleft palate. The etiology for oral clefts is complex with both genetic and environmental factors contributing to risk. Previous genome-wide association (GWAS) studies have identified multiple loci with small effects; however, many causal variants remain elusive. METHODS: In this study, we address this by specifically looking for rare, potentially damaging variants in family-based data. We analyzed both whole exome sequence (WES) data and whole genome sequence (WGS) data in multiplex cleft families to identify variants shared by affected individuals. RESULTS: Here we present the results from these analyses. Our most interesting finding was from a single Syrian family, which showed enrichment of nonsynonymous and potentially damaging rare variants in two genes: CASP9 and FAT4. CONCLUSION: Neither of these candidate genes has previously been associated with oral clefts and, if confirmed as contributing to disease risk, may indicate novel biological pathways in the genetic etiology for oral clefts.

10.
Genet Epidemiol ; 41(3): 244-250, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28019042

RESUMO

Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is the most common craniofacial birth defect in humans, affecting 1 in 700 live births. This malformation has a complex etiology where multiple genes and several environmental factors influence risk. At least a dozen different genes have been confirmed to be associated with risk of NSCL/P in previous studies. However, all the known genetic risk factors cannot fully explain the observed heritability of NSCL/P, and several authors have suggested gene-gene (G × G) interaction may be important in the etiology of this complex and heterogeneous malformation. We tested for G × G interactions using common single nucleotide polymorphic (SNP) markers from targeted sequencing in 13 regions identified by previous studies spanning 6.3 Mb of the genome in a study of 1,498 NSCL/P case-parent trios. We used the R-package trio to assess interactions between polymorphic markers in different genes, using a 1 degree of freedom (1df) test for screening, and a 4 degree of freedom (4df) test to assess statistical significance of epistatic interactions. To adjust for multiple comparisons, we performed permutation tests. The most significant interaction was observed between rs6029315 in MAFB and rs6681355 in IRF6 (4df P = 3.8 × 10-8 ) in case-parent trios of European ancestry, which remained significant after correcting for multiple comparisons. However, no significant interaction was detected in trios of Asian ancestry.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Epistasia Genética/genética , Etnicidade/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Povo Asiático , Feminino , Humanos , Masculino , Pais , Fatores de Risco , População Branca/genética
11.
PLoS One ; 11(10): e0164134, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27711239

RESUMO

Many well-powered genome-wide association studies have identified genetic determinants of self-reported smoking behaviors and measures of nicotine dependence, but most have not considered the role of structural variants, such as copy number variation (CNVs), influencing these phenotypes. Here, we included 2,889 African American and 6,187 non-Hispanic White subjects from the COPDGene cohort (http://www.copdgene.org) to carefully investigate the role of polymorphic CNVs across the genome on various measures of smoking behavior. We identified a CNV component (a hemizygous deletion) on chromosome 3p26.1 associated with two quantitative phenotypes related to smoking behavior among African Americans. This polymorphic hemizygous deletion is significantly associated with pack-years and cigarettes smoked per day among African American subjects in the COPDGene study. We sought evidence of replication in African Americans from the population based Atherosclerosis Risk in Communities (ARIC) study. While we observed similar CNV counts, the extent of exposure to cigarette smoking among ARIC subjects was quite different and the smaller sample size of heavy smokers in ARIC severely limited statistical power, so we were unable to replicate our findings from the COPDGene cohort. But meta-analyses of COPDGene and ARIC study subjects strengthened our association signal. However, a few linkage studies have reported suggestive linkage to the 3p26.1 region, and a few genome-wide association studies (GWAS) have reported markers in the gene (GRM7) nearest to this 3p26.1 area of polymorphic deletions are associated with measures of nicotine dependence among subjects of European ancestry.


Assuntos
Negro ou Afro-Americano/genética , Cromossomos Humanos Par 3/genética , Hemizigoto , Fumar/efeitos adversos , Variações do Número de Cópias de DNA , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Risco , Deleção de Sequência
12.
Genet Epidemiol ; 40(1): 81-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26643968

RESUMO

Chronic obstructive pulmonary disease (COPD) is a progressive disease with both environmental and genetic risk factors. Genome-wide association studies (GWAS) have identified multiple genomic regions influencing risk of COPD. To thoroughly investigate the genetic etiology of COPD, however, it is also important to explore the role of copy number variants (CNVs) because the presence of structural variants can alter gene expression and can be causal for some diseases. Here, we investigated effects of polymorphic CNVs on quantitative measures of pulmonary function and chest computed tomography (CT) phenotypes among subjects enrolled in COPDGene, a multisite study. COPDGene subjects consist of roughly one-third African American (AA) and two-thirds non-Hispanic white adult smokers (with or without COPD). We estimated CNVs using PennCNV on 9,076 COPDGene subjects using Illumina's Omni-Express genome-wide marker array. We tested for association between polymorphic CNV components (defined as disjoint intervals of copy number regions) for several quantitative phenotypes associated with COPD within each racial group. Among the AAs, we identified a polymorphic CNV on chromosome 5q35.2 located between two genes (FAM153B and SIMK1, but also harboring several pseudo-genes) giving genome-wide significance in tests of association with total lung capacity (TLCCT ) as measured by chest CT scans. This is the first study of genome-wide association tests of polymorphic CNVs and TLCCT . Although the ARIC cohort did not have the phenotype of TLCCT , we found similar counts of CNV deletions and amplifications among AA and European subjects in this second cohort.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 5 , Variações do Número de Cópias de DNA , Doença Pulmonar Obstrutiva Crônica/genética , Fumar , Negro ou Afro-Americano/genética , Idoso , Biomarcadores , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Cadeias de Markov , Pessoa de Meia-Idade , Capacidade Pulmonar Total , População Branca/genética
13.
Birth Defects Res A Clin Mol Teratol ; 103(10): 857-62, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26278207

RESUMO

BACKGROUND: The forkhead box F2 gene (FOXF2) located in chromosome 6p25.3 has been shown to play a crucial role in palatal development in mouse and rat models. To date, no evidence of linkage or association has been reported for this gene in humans with oral clefts. METHODS: Allelic transmission disequilibrium tests were used to robustly assess evidence of linkage and association with nonsyndromic cleft lip with or without cleft palate for nine single nucleotide polymorphisms (SNPs) in and around FOXF2 in both Asian and European trios using PLINK. RESULTS: Statistically significant evidence of linkage and association was shown for two SNPs (rs1711968 and rs732835) in 216 Asian trios where the empiric P values with permutation tests were 0.0016 and 0.005, respectively. The corresponding estimated odds ratios for carrying the minor allele at these SNPs were 2.05 (95% confidence interval = 1.41, 2.98) and 1.77 (95% confidence interval = 1.26, 2.49), respectively. CONCLUSION: Our results provided statistical evidence of linkage and association between FOXF2 and nonsyndromic cleft lip with or without cleft palate.


Assuntos
Cromossomos Humanos Par 6/genética , Fenda Labial/genética , Fissura Palatina/genética , Fatores de Transcrição Forkhead/genética , Polimorfismo de Nucleotídeo Único , Adulto , Animais , Povo Asiático , Feminino , Humanos , Masculino , Camundongos , Ratos
14.
Am J Hum Genet ; 96(3): 397-411, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25704602

RESUMO

Although genome-wide association studies (GWASs) for nonsyndromic orofacial clefts have identified multiple strongly associated regions, the causal variants are unknown. To address this, we selected 13 regions from GWASs and other studies, performed targeted sequencing in 1,409 Asian and European trios, and carried out a series of statistical and functional analyses. Within a cluster of strongly associated common variants near NOG, we found that one, rs227727, disrupts enhancer activity. We furthermore identified significant clusters of non-coding rare variants near NTN1 and NOG and found several rare coding variants likely to affect protein function, including four nonsense variants in ARHGAP29. We confirmed 48 de novo mutations and, based on best biological evidence available, chose two of these for functional assays. One mutation in PAX7 disrupted the DNA binding of the encoded transcription factor in an in vitro assay. The second, a non-coding mutation, disrupted the activity of a neural crest enhancer downstream of FGFR2 both in vitro and in vivo. This targeted sequencing study provides strong functional evidence implicating several specific variants as primary contributory risk alleles for nonsyndromic clefting in humans.


Assuntos
Encéfalo/anormalidades , Proteínas de Transporte/genética , Fenda Labial/genética , Fissura Palatina/genética , Fator de Transcrição PAX7/genética , Polimorfismo de Nucleotídeo Único , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Alelos , Sequência de Aminoácidos , Animais , Povo Asiático/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fator de Transcrição PAX7/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , População Branca/genética , Peixe-Zebra/genética
15.
Genet Epidemiol ; 39(5): 385-94, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25663376

RESUMO

Genome-wide association studies (GWAS) for nonsyndromic cleft lip with or without cleft palate (CL/P) have identified multiple genes as important in the etiology of this common birth defect. We performed a candidate gene/pathway analysis explicitly considering gene-gene (G × G) interaction to further explore the etiology of CL/P. Animal models have shown the WNT signaling pathway plays an important role in mid-facial development, and various genes in this pathway have been associated with nonsyndromic CL/P in previous studies. We propose a combined approach to search for possible G × G interactions using machine learning and regression-based methods to test for interactions between genes in the WNT family, and between these genes and other genes identified by GWAS in case-parent trios. Using this combined approach of regression-based and machine learning methods in CL/P case-parent trios, we found robust evidence of G × G interaction between markers in WNT5B and MAFB (empiric P-values = 0.0076 among Asian trios and P-values = 0.018 among European trios). Additional evidence for epistatic interaction between markers in WNT5A, IRF6, and C1orf107 was seen among Asian trios, and markers in the 8q24 region and WNT5B among European trios.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Fatores Reguladores de Interferon/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Wnt/metabolismo , Inteligência Artificial , Povo Asiático/genética , Epistasia Genética , Etnicidade/genética , Estudo de Associação Genômica Ampla , Humanos , Fatores Reguladores de Interferon/genética , Modelos Genéticos , Pais , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas/genética , População Branca/genética , Proteínas Wnt/genética , Proteína Wnt-5a
16.
PLoS One ; 9(10): e109038, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25303326

RESUMO

BACKGROUND: Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common disorder with complex etiology. The Bone Morphogenetic Protein 4 gene (BMP4) has been considered a prime candidate gene with evidence accumulated from animal experimental studies, human linkage studies, as well as candidate gene association studies. The aim of the current study is to test for linkage and association between BMP4 and NSCL/P that could be missed in genome-wide association studies (GWAS) when genotypic (G) main effects alone were considered. METHODOLOGY/PRINCIPAL FINDINGS: We performed the analysis considering G and interactions with multiple maternal environmental exposures using additive conditional logistic regression models in 895 Asian and 681 European complete NSCL/P trios. Single nucleotide polymorphisms (SNPs) that passed the quality control criteria among 122 genotyped and 25 imputed single nucleotide variants in and around the gene were used in analysis. Selected maternal environmental exposures during 3 months prior to and through the first trimester of pregnancy included any personal tobacco smoking, any environmental tobacco smoke in home, work place or any nearby places, any alcohol consumption and any use of multivitamin supplements. A novel significant association held for rs7156227 among Asian NSCL/P and non-syndromic cleft lip and palate (NSCLP) trios after Bonferroni correction which was not seen when G main effects alone were considered in either allelic or genotypic transmission disequilibrium tests. Odds ratios for carrying one copy of the minor allele without maternal exposure to any of the four environmental exposures were 0.58 (95%CI = 0.44, 0.75) and 0.54 (95%CI = 0.40, 0.73) for Asian NSCL/P and NSCLP trios, respectively. The Bonferroni P values corrected for the total number of 117 tested SNPs were 0.0051 (asymptotic P = 4.39*10(-5)) and 0.0065 (asymptotic P = 5.54*10(-5)), accordingly. In European trios, no significant association was seen for any SNPs after Bonferroni corrections for the total number of 120 tested SNPs. CONCLUSIONS/SIGNIFICANCE: Our findings add evidence from GWAS to support the role of BMP4 in susceptibility to NSCL/P originally identified in linkage and candidate gene association studies.


Assuntos
Proteína Morfogenética Óssea 4/genética , Fenda Labial/genética , Fissura Palatina/genética , Interação Gene-Ambiente , Povo Asiático/genética , Fenda Labial/complicações , Fenda Labial/etiologia , Fissura Palatina/complicações , Fissura Palatina/etiologia , Feminino , Ligação Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Exposição Materna/efeitos adversos , Polimorfismo de Nucleotídeo Único , Gravidez , Fatores de Risco , Fumar/efeitos adversos , Poluição por Fumaça de Tabaco/efeitos adversos
17.
Genet Epidemiol ; 38(7): 652-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25112515

RESUMO

African Americans are admixed with genetic contributions from European and African ancestral populations. Admixture mapping leverages this information to map genes influencing differential disease risk across populations. We performed admixture and association mapping in 3,300 African American current or former smokers from the COPDGene Study. We analyzed estimated local ancestry and SNP genotype information to identify regions associated with FEV1 /FVC, the ratio of forced expiratory volume in one second to forced vital capacity, measured by spirometry performed after bronchodilator administration. Global African ancestry inversely associated with FEV1 /FVC (P = 0.035). Genome-wide admixture analysis, controlling for age, gender, body mass index, current smoking status, pack-years smoked, and four principal components summarizing the genetic background of African Americans in the COPDGene Study, identified a region on chromosome 12q14.1 associated with FEV1 /FVC (P = 2.1 × 10(-6) ) when regressed on local ancestry. Allelic association in this region of chromosome 12 identified an intronic variant in FAM19A2 (rs348644) as associated with FEV1 /FVC (P = 1.76 × 10(-6) ). By combining admixture and association mapping, a marker on chromosome 12q14.1 was identified as being associated with reduced FEV1 /FVC ratio among African Americans in the COPDGene Study.


Assuntos
Quimiocinas CC/genética , Doença Pulmonar Obstrutiva Crônica/genética , Capacidade Vital/genética , Negro ou Afro-Americano/genética , Mapeamento Cromossômico , Suscetibilidade a Doenças , Feminino , Volume Expiratório Forçado/genética , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Locos de Características Quantitativas , Fatores de Risco , População Branca/genética
18.
Genetics ; 197(3): 1039-44, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24793288

RESUMO

A dozen genes/regions have been confirmed as genetic risk factors for oral clefts in human association and linkage studies, and animal models argue even more genes may be involved. Genomic sequencing studies should identify specific causal variants and may reveal additional genes as influencing risk to oral clefts, which have a complex and heterogeneous etiology. We conducted a whole exome sequencing (WES) study to search for potentially causal variants using affected relatives drawn from multiplex cleft families. Two or three affected second, third, and higher degree relatives from 55 multiplex families were sequenced. We examined rare single nucleotide variants (SNVs) shared by affected relatives in 348 recognized candidate genes. Exact probabilities that affected relatives would share these rare variants were calculated, given pedigree structures, and corrected for the number of variants tested. Five novel and potentially damaging SNVs shared by affected distant relatives were found and confirmed by Sanger sequencing. One damaging SNV in CDH1, shared by three affected second cousins from a single family, attained statistical significance (P = 0.02 after correcting for multiple tests). Family-based designs such as the one used in this WES study offer important advantages for identifying genes likely to be causing complex and heterogeneous disorders.


Assuntos
Fissura Palatina/genética , Exoma/genética , Estudos de Associação Genética , Mutação/genética , Análise de Sequência de DNA/métodos , Antígenos CD , Caderinas/genética , Etnicidade/genética , Família , Feminino , Humanos , Masculino , Linhagem , Reprodutibilidade dos Testes
19.
Lancet Respir Med ; 2(3): 214-25, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24621683

RESUMO

BACKGROUND: The genetic risk factors for susceptibility to chronic obstructive pulmonary disease (COPD) are still largely unknown. Additional genetic variants are likely to be identified by genome-wide association studies in larger cohorts or specific subgroups. We sought to identify risk loci for moderate to severe and severe COPD with data from several cohort studies. METHODS: We combined genome-wide association analysis data from participants in the COPDGene study (non-Hispanic white and African-American ethnic origin) and the ECLIPSE, NETT/NAS, and Norway GenKOLS studies (self-described white ethnic origin). We did analyses comparing control individuals with individuals with moderate to severe COPD and with a subset of individuals with severe COPD. Single nucleotide polymorphisms yielding a p value of less than 5 × 10(-7) in the meta-analysis at loci not previously described were genotyped in individuals from the family-based ICGN study. We combined results in a joint meta-analysis (threshold for significance p<5 × 10(-8)). FINDINGS: Analysis of 6633 individuals with moderate to severe COPD and 5704 control individuals confirmed association at three known loci: CHRNA3 (p=6·38 × 10(-14)), FAM13A (p=1·12 × 10(-14)), and HHIP (p=1·57 × 10(-12)). We also showed significant evidence of association at a novel locus near RIN3 (p=5·25 × 10(-9)). In the overall meta-analysis (ie, including data from 2859 ICGN participants), the association with RIN3 remained significant (p=5·4 × 10(-9)). 3497 individuals were included in our analysis of severe COPD. The effect estimates for the loci near HHIP and CHRNA3 were significantly stronger in severe disease than in moderate to severe disease (p<0·01). We also identified associations at two additional loci: MMP12 (overall joint meta-analysis p=2·6 × 10(-9)) and TGFB2 (overall joint meta-analysis p=8·3 × 10(-9)). INTERPRETATION: We have confirmed associations with COPD at three known loci and identified three new genome-wide significant associations. Genetic variants other than in α-1 antitrypsin increase the risk of COPD. FUNDING: US National Heart, Lung, and Blood Institute; the Alpha-1 Foundation; the COPD Foundation through contributions from AstraZeneca, Boehringer Ingelheim, Novartis, and Sepracor; GlaxoSmithKline; Centers for Medicare and Medicaid Services; Agency for Healthcare Research and Quality; and US Department of Veterans Affairs.


Assuntos
Loci Gênicos/genética , Predisposição Genética para Doença/genética , Doença Pulmonar Obstrutiva Crônica/genética , Estudo de Associação Genômica Ampla , Humanos
20.
PLoS One ; 9(2): e88088, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24516586

RESUMO

Nonsyndromic cleft palate (CP) is one of the most common human birth defects and both genetic and environmental risk factors contribute to its etiology. We conducted a genome-wide association study (GWAS) using 550 CP case-parent trios ascertained in an international consortium. Stratified analysis among trios with different ancestries was performed to test for GxE interactions with common maternal exposures using conditional logistic regression models. While no single nucleotide polymorphism (SNP) achieved genome-wide significance when considered alone, markers in SLC2A9 and the neighboring WDR1 on chromosome 4p16.1 gave suggestive evidence of gene-environment interaction with environmental tobacco smoke (ETS) among 259 Asian trios when the models included a term for GxE interaction. Multiple SNPs in these two genes were associated with increased risk of nonsyndromic CP if the mother was exposed to ETS during the peri-conceptual period (3 months prior to conception through the first trimester). When maternal ETS was considered, fifteen of 135 SNPs mapping to SLC2A9 and 9 of 59 SNPs in WDR1 gave P values approaching genome-wide significance (10(-6)

Assuntos
Cromossomos Humanos Par 4/genética , Fissura Palatina/genética , Interação Gene-Ambiente , Predisposição Genética para Doença , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas dos Microfilamentos/genética , Poluição por Fumaça de Tabaco/efeitos adversos , Povo Asiático/genética , Feminino , Humanos , Modelos Logísticos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...