Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 8(5): e10542, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693049

RESUMO

Cyclic peptides are poised to target historically difficult to drug intracellular protein-protein interactions, however, their general cell impermeability poses a challenge for characterizing function. Recent advances in microfluidics have enabled permeabilization of the cytoplasmic membrane by physical cell deformation (i.e., mechanoporation), resulting in intracellular delivery of impermeable macromolecules in vector- and electrophoretic-free approaches. However, the number of payloads (e.g., peptides) and/or concentrations delivered via microfluidic mechanoporation is limited by having to pre-mix cells and payloads, a manually intensive process. In this work, we show that cells are momentarily permeable (t 1/2 = 1.1-2.8 min) after microfluidic vortex shedding (µVS) and that lower molecular weight macromolecules can be cytosolically delivered upon immediate exposure after cells are processed/permeabilized. To increase the ability to screen peptides, we built a system, dispensing-microfluidic vortex shedding (DµVS), that integrates a µVS chip with inline microplate-based dispensing. To do so, we synced an electronic pressure regulator, flow sensor, on/off dispense valve, and an x-y motion platform in a software-driven feedback loop. Using this system, we were able to deliver low microliter-scale volumes of transiently mechanoporated cells to hundreds of wells on microtiter plates in just several minutes (e.g., 96-well plate filled in <2.5 min). We validated the delivery of an impermeable peptide directed at MDM2, a negative regulator of the tumor suppressor p53, using a click chemistry- and NanoBRET-based cell permeability assay in 96-well format, with robust delivery across the full plate. Furthermore, we demonstrated that DµVS could be used to identify functional, low micromolar, cellular activity of otherwise cell-inactive MDM2-binding peptides using a p53 reporter cell assay in 96- and 384-well format. Overall, DµVS can be combined with downstream cell assays to investigate intracellular target engagement in a high-throughput manner, both for improving structure-activity relationship efforts and for early proof-of-biology of non-optimized peptide (or potentially other macromolecular) tools.

2.
Cell Chem Biol ; 30(10): 1313-1322.e7, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37499664

RESUMO

Identifying virus-host interactions on the cell surface can improve our understanding of viral entry and pathogenesis. SARS-CoV-2, the causative agent of the COVID-19 disease, uses ACE2 as a receptor to enter cells. Yet the full repertoire of cell surface proteins that contribute to viral entry is unknown. We developed a photocatalyst-based viral-host protein microenvironment mapping platform (ViraMap) to probe the molecular neighborhood of the SARS-CoV-2 spike protein on the human cell surface. Application of ViraMap to ACE2-expressing cells captured ACE2, the established co-receptor NRP1, and several novel cell surface proteins. We systematically analyzed the relevance of these candidate proteins to SARS-CoV-2 entry by knockdown and overexpression approaches in pseudovirus and authentic infection models and identified PTGFRN and EFNB1 as bona fide viral entry factors. Our results highlight additional host targets that participate in SARS-CoV-2 infection and showcase ViraMap as a powerful platform for defining viral interactions on the cell surface.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus , Proteínas Virais/metabolismo , Ligação Proteica
3.
Nat Chem Biol ; 18(8): 850-858, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35654846

RESUMO

The growing appreciation of immune cell-cell interactions within disease environments has led to extensive efforts to develop immunotherapies. However, characterizing complex cell-cell interfaces in high resolution remains challenging. Thus, technologies leveraging therapeutic-based modalities to profile intercellular environments offer opportunities to study cell-cell interactions with molecular-level insight. We introduce photocatalytic cell tagging (PhoTag) for interrogating cell-cell interactions using single-domain antibodies (VHHs) conjugated to photoactivatable flavin-based cofactors. Following irradiation with visible light, the flavin photocatalyst generates phenoxy radical tags for targeted labeling. Using this technology, we demonstrate selective synaptic labeling across the PD-1/PD-L1 axis in antigen-presenting cell-T cell systems. In combination with multiomics single-cell sequencing, we monitored interactions between peripheral blood mononuclear cells and Raji PD-L1 B cells, revealing differences in transient interactions with specific T cell subtypes. The utility of PhoTag in capturing cell-cell interactions will enable detailed profiling of intercellular communication across different biological systems.


Assuntos
Antígeno B7-H1 , Leucócitos Mononucleares , Comunicação Celular , Flavinas , Imunoterapia
4.
Cell Rep ; 38(8): 110399, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35139367

RESUMO

Follicular helper T (Tfh) cells promote, whereas follicular regulatory T (Tfr) cells restrain, germinal center (GC) reactions. However, the precise roles of these cells in the complex GC reaction remain poorly understood. Here, we perturb Tfh or Tfr cells after SARS-CoV-2 spike protein vaccination in mice. We find that Tfh cells promote the frequency and somatic hypermutation (SHM) of Spike-specific GC B cells and regulate clonal diversity. Tfr cells similarly control SHM and clonal diversity in the GC but do so by limiting clonal competition. In addition, deletion of Tfh or Tfr cells during primary vaccination results in changes in SHM after vaccine boosting. Aged mice, which have altered Tfh and Tfr cells, have lower GC responses, presenting a bimodal distribution of SHM. Together, these data demonstrate that GC responses to SARS-CoV-2 spike protein vaccines require a fine balance of positive and negative follicular T cell help to optimize humoral immunity.


Assuntos
COVID-19/prevenção & controle , Centro Germinativo/imunologia , Glicoproteína da Espícula de Coronavírus/administração & dosagem , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Envelhecimento , Animais , Anticorpos Antivirais/sangue , Linfócitos B/imunologia , Linfócitos B/metabolismo , COVID-19/virologia , Centro Germinativo/citologia , Centro Germinativo/metabolismo , Imunidade Humoral , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Vacinação , Vacinas de Subunidades Antigênicas/imunologia
5.
RSC Chem Biol ; 2(1): 30-46, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34458775

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current coronavirus disease 2019 (COVID-19) pandemic that has led to a global economic disruption and collapse. With several ongoing efforts to develop vaccines and treatments for COVID-19, understanding the molecular interaction between the coronavirus, host cells, and the immune system is critical for effective therapeutic interventions. Greater insight into these mechanisms will require the contribution and combination of multiple scientific disciplines including the techniques and strategies that have been successfully deployed by chemical biology to tease apart complex biological pathways. We highlight in this review well-established strategies and methods to study coronavirus-host biophysical interactions and discuss the impact chemical biology will have on understanding these interactions at the molecular level.

6.
Chembiochem ; 21(24): 3555-3562, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-32749732

RESUMO

Despite the growing use of visible-light photochemistry in both chemistry and biology, no general low-heat photoreactor for use across these different disciplines exists. Herein, we describe the design and use of a standardized photoreactor for visible-light-driven activation and photocatalytic chemical transformations. Using this single benchtop photoreactor, we performed photoredox reactions across multiple visible light wavelengths, a high-throughput photocatalytic cross-coupling reaction, and in vitro labeling of proteins and live cells. Given the success of this reactor in all tested applications, we envision that this multi-use photoreactor will be widely used in biology, chemical biology, and medicinal chemistry settings.


Assuntos
Biotina/análise , Luz , Fotobiorreatores , Tiramina/química , Catálise , Linhagem Celular Tumoral , Desenho de Equipamento , Humanos , Estrutura Molecular , Processos Fotoquímicos , Tiramina/análogos & derivados , Tiramina/síntese química
7.
Sci Rep ; 10(1): 5321, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210258

RESUMO

Recent reports show that colorectal tumors contain microbiota that are distinct from those that reside in a 'normal' colon environment, and that these microbiota can contribute to cancer progression. Fusobacterium nucleatum is the most commonly observed species in the colorectal tumor microenvironment and reportedly influences disease progression through numerous mechanisms. However, a detailed understanding of the role of this organism in cancer progression is limited, in part due to challenges in maintaining F. nucleatum viability under standard aerobic cell culture conditions. Herein we describe the development of a 3-dimensional (3D) tumor spheroid model that can harbor and promote the growth of anaerobic bacteria. Bacteria-tumor cell interactions and metabolic crosstalk were extensively studied by measuring the kinetics of bacterial growth, cell morphology and lysis, cancer-related gene expression, and metabolomics. We observed that viable F. nucleatum assembles biofilm-like structures in the tumor spheroid microenvironment, whereas heat-killed F. nucleatum is internalized and sequestered in the cancer cells. Lastly, we use the model to co-culture 28 Fusobacterium clinical isolates and demonstrate that the model successfully supports co-culture with diverse fusobacterial species. This bacteria-spheroid co-culture model enables mechanistic investigation of the role of anaerobic bacteria in the tumor microenvironment.


Assuntos
Técnicas de Cultura de Células/métodos , Neoplasias Colorretais/microbiologia , Esferoides Celulares/metabolismo , Bactérias Anaeróbias , Linhagem Celular Tumoral , Técnicas de Cocultura/métodos , Neoplasias Colorretais/patologia , Progressão da Doença , Infecções por Fusobacterium/microbiologia , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/metabolismo , Fusobacterium nucleatum/patogenicidade , Humanos , Modelos Biológicos , Microambiente Tumoral/fisiologia
8.
Science ; 367(6482): 1091-1097, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32139536

RESUMO

Many disease pathologies can be understood through the elucidation of localized biomolecular networks, or microenvironments. To this end, enzymatic proximity labeling platforms are broadly applied for mapping the wider spatial relationships in subcellular architectures. However, technologies that can map microenvironments with higher precision have long been sought. Here, we describe a microenvironment-mapping platform that exploits photocatalytic carbene generation to selectively identify protein-protein interactions on cell membranes, an approach we term MicroMap (µMap). By using a photocatalyst-antibody conjugate to spatially localize carbene generation, we demonstrate selective labeling of antibody binding targets and their microenvironment protein neighbors. This technique identified the constituent proteins of the programmed-death ligand 1 (PD-L1) microenvironment in live lymphocytes and selectively labeled within an immunosynaptic junction.


Assuntos
Antígeno B7-H1/metabolismo , Membrana Celular/metabolismo , Microambiente Celular , Linfócitos/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Catálise , Membrana Celular/efeitos da radiação , Transferência de Energia , Humanos , Células Jurkat , Linfócitos/efeitos da radiação , Metano/análogos & derivados , Metano/química , Metano/efeitos da radiação , Processos Fotoquímicos , Raios Ultravioleta
9.
Curr Microbiol ; 76(4): 398-409, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30603964

RESUMO

Cell wall hydrolases are enzymes that cleave bacterial cell walls by hydrolyzing specific bonds within peptidoglycan and other portions of the envelope. Two major sources of hydrolases in nature are from hosts and microbes. This study specifically investigated whether cell wall hydrolytic enzymes could be employed as exogenous reagents to augment the efficacy of antimicrobial agents against mycobacteria. Mycobacterium smegmatis cultures were treated with ten conventional antibiotics and six anti-tuberculosis drugs-alone or in combination with cell wall hydrolases. Culture turbidity, colony-forming units (CFUs), vital staining, and oxygen consumption were all monitored. The majority of antimicrobial agents tested alone only had minimal inhibitory effects on bacterial growth. However, the combination of cell wall hydrolases and most of the antimicrobial agents tested, revealed a synergistic effect that resulted in significant enhancement of bactericidal activity. Vital staining showed increased cellular damage when M. smegmatis and Mycobacterium bovis bacillus Calmette-Guérin (M. bovis BCG) were treated with both drug and lysozyme. Respiration analysis revealed stress responses when cells were treated with lysozyme and drugs individually, and an acute increase in oxygen consumption when treated with both drug and lysozyme. Similar trends were also observed for the other three enzymes (hydrolase-30, RipA-His6 and RpfE-His6) evaluated. These findings demonstrated that cell wall hydrolytic enzymes, as a group of biological agents, have the capability to improve the potency of many current antimicrobial drugs and render ineffective antibiotics effective in killing mycobacteria. This combinatorial approach may represent an important strategy to eliminate drug-resistant bacteria.


Assuntos
Antibacterianos/farmacologia , Parede Celular/enzimologia , Hidrolases/metabolismo , Mycobacterium/efeitos dos fármacos , Antituberculosos/farmacologia , Contagem de Colônia Microbiana , Sinergismo Farmacológico , Viabilidade Microbiana/efeitos dos fármacos , Mycobacterium/enzimologia , Mycobacterium/crescimento & desenvolvimento , Mycobacterium/metabolismo , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium bovis/metabolismo , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Oxigênio/metabolismo
10.
Sci Signal ; 11(541)2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065029

RESUMO

Members of the family of nuclear factor κB (NF-κB) transcription factors are critical for multiple cellular processes, including regulating innate and adaptive immune responses, cell proliferation, and cell survival. Canonical NF-κB complexes are retained in the cytoplasm by the inhibitory protein IκBα, whereas noncanonical NF-κB complexes are retained by p100. Although activation of canonical NF-κB signaling through the IκBα kinase complex is well studied, few regulators of the NF-κB-inducing kinase (NIK)-dependent processing of noncanonical p100 to p52 and the subsequent nuclear translocation of p52 have been identified. We discovered a role for cyclin-dependent kinase 12 (CDK12) in transcriptionally regulating the noncanonical NF-κB pathway. High-content phenotypic screening identified the compound 919278 as a specific inhibitor of the lymphotoxin ß receptor (LTßR), and tumor necrosis factor (TNF) receptor superfamily member 12A (FN14)-dependent nuclear translocation of p52, but not of the TNF-α receptor-mediated nuclear translocation of p65. Chemoproteomics identified CDK12 as the target of 919278. CDK12 inhibition by 919278, the CDK inhibitor THZ1, or siRNA-mediated knockdown resulted in similar global transcriptional changes and prevented the LTßR- and FN14-dependent expression of MAP3K14 (which encodes NIK) as well as NIK accumulation by reducing phosphorylation of the carboxyl-terminal domain of RNA polymerase II. By coupling a phenotypic screen with chemoproteomics, we identified a pathway for the activation of the noncanonical NF-κB pathway that could serve as a therapeutic target in autoimmunity and cancer.


Assuntos
Antineoplásicos/farmacologia , Quinases Ciclina-Dependentes/metabolismo , Regulação Neoplásica da Expressão Gênica , NF-kappa B/metabolismo , Osteossarcoma/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Ciclinas/metabolismo , Perfilação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Indóis/farmacologia , Receptor beta de Linfotoxina/antagonistas & inibidores , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Subunidade p52 de NF-kappa B/genética , Subunidade p52 de NF-kappa B/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Propionatos/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteoma , Transdução de Sinais , Receptor de TWEAK/antagonistas & inibidores , Receptor de TWEAK/genética , Receptor de TWEAK/metabolismo , Células Tumorais Cultivadas , Quinase Induzida por NF-kappaB
11.
ACS Chem Biol ; 12(8): 2015-2020, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28718624

RESUMO

Irreversible enzyme inhibitors and covalent chemical biology probes often utilize the reaction of a protein cysteine residue with an appropriately positioned electrophile (e.g., acrylamide) on the ligand template. However, cysteine residues are not always available for site-specific protein labeling, and therefore new approaches are needed to expand the toolkit of appropriate electrophiles ("warheads") that target alternative amino acids. We previously described the rational targeting of tyrosine residues in the active site of a protein (the mRNA decapping scavenger enzyme, DcpS) using inhibitors armed with a sulfonyl fluoride electrophile. These inhibitors subsequently enabled the development of clickable probe technology to measure drug-target occupancy in live cells. Here we describe a fluorosulfate-containing inhibitor (aryl fluorosulfate probe (FS-p1)) with excellent chemical and metabolic stability that reacts selectively with a noncatalytic serine residue in the same active site of DcpS as confirmed by peptide mapping experiments. Our results suggest that noncatalytic serine targeting using fluorosulfate electrophilic warheads could be a suitable strategy for the development of covalent inhibitor drugs and chemical probes.


Assuntos
Inibidores Enzimáticos/química , Fluoretos/química , Serina/química , Ácidos Sulfúricos/química , Animais , Domínio Catalítico , Linhagem Celular , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Humanos
12.
ACS Comb Sci ; 18(10): 611-615, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27494431

RESUMO

Small molecule selectivity is an essential component of candidate drug selection and target validation. New technologies are required to better understand off-target effects, with particular emphasis needed on broad protein profiling. Here, we describe the use of a tritiated chemical probe and a 9000 human protein microarray to discern the binding selectivity of an inhibitor of the mRNA decapping scavenger enzyme DcpS. An immobilized m7GTP resin was also used to assess the selectivity of a DcpS inhibitor against mRNA cap-associated proteins in whole cell extracts. These studies confirm the exquisite selectivity of diaminoquinazoline DcpS inhibitors, and highlight the utility of relatively simple protein microarray and affinity enrichment technologies in drug discovery and chemical biology.


Assuntos
Endorribonucleases/análise , Sondas Moleculares/química , Quinazolinas/química , Proteínas de Ligação ao Cap de RNA/análise , Catálise , Células Cultivadas , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/genética , Humanos , Leucócitos Mononucleares/química , Análise Serial de Proteínas , RNA Mensageiro/genética , Proteína 2 de Sobrevivência do Neurônio Motor/análise , Trítio
13.
Org Biomol Chem ; 14(26): 6179-83, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27216142

RESUMO

Proof of drug-target engagement in physiologically-relevant contexts is a key pillar of successful therapeutic target validation. We developed two orthogonal technologies, the cellular thermal shift assay (CETSA) and a covalent chemical probe reporter approach (harnessing sulfonyl fluoride tyrosine labeling and subsequent click chemistry) to measure the occupancy of the mRNA-decapping scavenger enzyme DcpS by a small molecule inhibitor in live cells. Enzyme affinity determined using isothermal dose response fingerprinting (ITDRFCETSA) and the concentration required to occupy 50% of the enzyme (OC50) using the chemical probe reporter assay were very similar. In this case, the chemical probe method worked well due to the long offset kinetics of the reversible inhibitor (determined using a fluorescent dye-tagged probe). This work suggests that CETSA could become the first choice assay to determine in-cell target engagement due to its simplicity.


Assuntos
Endorribonucleases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/química , Quinazolinas/farmacologia , Temperatura , Química Click , Relação Dose-Resposta a Droga , Endorribonucleases/metabolismo , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Estrutura Molecular , Quinazolinas/química , Ácidos Sulfínicos/química , Tirosina/química
14.
Mol Biosyst ; 11(10): 2709-12, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25959423

RESUMO

Despite its diverse applications, such as identification of the protein binding partners of small molecules and investigation of intracellular drug-target engagement, photoaffinity labelling (PAL) is intrinsically challenging, primarily due to the difficulty in discovering functionally active photoaffinity probes. Here we describe the creation of a chemoproteomic library to discover a novel photoaffinity probe for DcpS, an mRNA decapping enzyme that is a putative target for Spinal Muscular Atrophy. This library approach expedites the discovery of photoaffinity probes and expands the chemical biology toolbox to include RNA cap-binding proteins.


Assuntos
Endorribonucleases/metabolismo , Sondas Moleculares/química , Marcadores de Fotoafinidade/química , Sítios de Ligação , Endorribonucleases/química , Biblioteca Gênica , Humanos , Modelos Moleculares , Sondas Moleculares/metabolismo , Quinazolinas/química
16.
ACS Chem Biol ; 10(4): 1094-8, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25571984

RESUMO

This work describes the first rational targeting of tyrosine residues in a protein binding site by small-molecule covalent probes. Specific tyrosine residues in the active site of the mRNA-decapping scavenger enzyme DcpS were modified using reactive sulfonyl fluoride covalent inhibitors. Structure-based molecular design was used to create an alkyne-tagged probe bearing the sulfonyl fluoride warhead, thus enabling the efficient capture of the protein from a complex proteome. Use of the probe in competition experiments with a diaminoquinazoline DcpS inhibitor permitted the quantification of intracellular target occupancy. As a result, diaminoquinazoline upregulators of survival motor neuron protein that are used for the treatment of spinal muscular atrophy were confirmed as inhibitors of DcpS in human primary cells. This work illustrates the utility of sulfonyl fluoride probes designed to react with specific tyrosine residues of a protein and augments the chemical biology toolkit by these probes uses in target validation and molecular pharmacology.


Assuntos
Endorribonucleases/metabolismo , Inibidores Enzimáticos/farmacologia , Sondas Moleculares/química , Ácidos Sulfínicos/química , Tirosina/metabolismo , Domínio Catalítico , Células Cultivadas , Técnicas de Química Sintética , Cristalografia por Raios X , Endorribonucleases/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Sondas Moleculares/síntese química , Terapia de Alvo Molecular/métodos , Relação Estrutura-Atividade , Tirosina/química
17.
Nat Chem Biol ; 10(9): 760-767, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25038787

RESUMO

Kinases are principal components of signal transduction pathways and the focus of intense basic and drug discovery research. Irreversible inhibitors that covalently modify non-catalytic cysteines in kinase active sites have emerged as valuable probes and approved drugs. Many protein classes, however, have functional cysteines, and therefore understanding the proteome-wide selectivity of covalent kinase inhibitors is imperative. Here, we accomplish this objective using activity-based protein profiling coupled with quantitative MS to globally map the targets, both specific and nonspecific, of covalent kinase inhibitors in human cells. Many of the specific off-targets represent nonkinase proteins that, notably, have conserved active site cysteines. We define windows of selectivity for covalent kinase inhibitors and show that, when these windows are exceeded, rampant proteome-wide reactivity and kinase target-independent cell death conjointly occur. Our findings, taken together, provide an experimental road map to illuminate opportunities and surmount challenges for the development of covalent kinase inhibitors.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteoma/genética , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisteína/química , Genes erbB-1/genética , Humanos , Cinética , Piperidinas , Proteínas Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
18.
Mol Biosyst ; 10(5): 952-69, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623162

RESUMO

This review highlights some of the recent advances made in our understanding of the diversity of tyrosine biochemistry and shows how this has inspired novel applications in numerous areas of molecular design and synthesis, including chemical biology and bioconjugation. The pathophysiological implications of tyrosine biochemistry will be presented from a molecular perspective and the opportunities for therapeutic intervention explored.


Assuntos
Tirosina/química , Tirosina/metabolismo , Animais , Elétrons , Humanos , Modelos Moleculares , Eletricidade Estática
19.
Proc Natl Acad Sci U S A ; 110(24): 9932-7, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23716698

RESUMO

Bacterial toxins have evolved successful strategies for coopting host proteins to access the cytosol of host cells. Anthrax lethal factor (LF) enters the cytosol through pores in the endosomal membrane formed by anthrax protective antigen. Although in vitro models using planar lipid bilayers have shown that translocation can occur in the absence of cellular factors, recent studies using intact endosomes indicate that host factors are required for translocation in the cellular environment. In this study, we describe a high-throughput shRNA screen to identify host factors required for anthrax lethal toxin-induced cell death. The cytosolic chaperonin complex chaperonin containing t-complex protein 1 (CCT) was identified, and subsequent studies showed that CCT is required for efficient delivery of LF and related fusion proteins into the cytosol. We further show that knockdown of CCT inhibits the acid-induced delivery of LF and the fusion protein LFN-Bla (N terminal domain of LF fused to ß-lactamase) across the plasma membrane of intact cells. Together, these results suggest that CCT is required for efficient delivery of enzymatically active toxin to the cytosol and are consistent with a direct role for CCT in translocation of LF through the protective antigen pore.


Assuntos
Antígenos de Bactérias/metabolismo , Bacillus anthracis/metabolismo , Toxinas Bacterianas/metabolismo , Chaperonina com TCP-1/metabolismo , Citosol/metabolismo , Animais , Bacillus anthracis/fisiologia , Western Blotting , Linhagem Celular , Chaperonina com TCP-1/genética , Citosol/microbiologia , Endossomos/metabolismo , Interações Hospedeiro-Patógeno , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Transporte Proteico/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , beta-Lactamases/genética , beta-Lactamases/metabolismo
20.
Nat Chem Biol ; 9(6): 398-405, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23603659

RESUMO

Formation of the inflammasome, a scaffolding complex that activates caspase-1, is important in numerous diseases. Pyroptotic cell death induced by anthrax lethal toxin (LT) is a model for inflammasome-mediated caspase-1 activation. We discovered 7-desacetoxy-6,7-dehydrogedunin (7DG) in a phenotypic screen as a small molecule that protects macrophages from LT-induced death. Using chemical proteomics, we identified protein kinase R (PKR) as the target of 7DG and show that RNAi knockdown of PKR phenocopies treatment with 7DG. Further, we show that PKR's role in ASC assembly and caspase-1 activation induced by several different inflammasome stimuli is independent of PKR's kinase activity, demonstrating that PKR has a previously uncharacterized role in caspase-1 activation and pyroptosis that is distinct from its reported kinase-dependent roles in apoptosis and inflammasome formation in lipopolysaccharide-primed cells. Remarkably, PKR has different roles in two distinct cell death pathways and has a broad role in inflammasome function relevant in other diseases.


Assuntos
Morte Celular , eIF-2 Quinase/química , Animais , Bacillus anthracis/enzimologia , Caspase 1/metabolismo , Domínio Catalítico , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Proteínas de Choque Térmico HSP90/metabolismo , Concentração de Íons de Hidrogênio , Inflamação , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...