Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(1)2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-35062314

RESUMO

Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species (ROS) that can inactivate microorganisms. The botanical extract PhytoQuinTM is a powerful photosensitizer with antimicrobial properties. We previously demonstrated that photoactivated PhytoQuin also has antiviral properties against herpes simplex viruses and adenoviruses in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. Here, we report that human coronaviruses (HCoVs) are also susceptible to photodynamic inactivation. Photoactivated-PhytoQuin inhibited the replication of the alphacoronavirus HCoV-229E and the betacoronavirus HCoV-OC43 in cultured cells across a range of sub-cytotoxic doses. This antiviral effect was light-dependent, as we observed minimal antiviral effect of PhytoQuin in the absence of photoactivation. Using RNase protection assays, we observed that PDI disrupted HCoV particle integrity allowing for the digestion of viral RNA by exogenous ribonucleases. Using lentiviruses pseudotyped with the SARS-CoV-2 Spike (S) protein, we once again observed a strong, light-dependent antiviral effect of PhytoQuin, which prevented S-mediated entry into human cells. We also observed that PhytoQuin PDI altered S protein electrophoretic mobility. The PhytoQuin constituent emodin displayed equivalent light-dependent antiviral activity to PhytoQuin in matched-dose experiments, indicating that it plays a central role in PhytoQuin PDI against CoVs. Together, these findings demonstrate that HCoV lipid envelopes and proteins are damaged by PhytoQuin PDI and expands the list of susceptible viruses.


Assuntos
Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Inativação de Vírus/efeitos dos fármacos , Animais , Antivirais/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Emodina/farmacologia , Emodina/efeitos da radiação , Humanos , Luz , Fármacos Fotossensibilizantes/efeitos da radiação , Extratos Vegetais/farmacologia , Extratos Vegetais/efeitos da radiação , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos , Vírion/efeitos dos fármacos
2.
ACS Appl Mater Interfaces ; 11(4): 3629-3644, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30608121

RESUMO

A series of cationic heteroleptic iridium(III) complexes bearing tris-diimine ligands [Ir(phen)2(R-phen)]3+ (R-phen = phenanthroline (1), 3,8-diphenylphenanthroline (2), 3,8-dipyrenylphenanthroline (3), 3-phenylphenanthroline (4), 3-pyrenylphenanthroline (5), and 3,8-diphenylethynylphenanthroline (6)) were synthesized and characterized. These complexes possessed phen ligand-localized 1π,π* transitions below 300 nm, and charge transfer (1CT) and/or 1π,π* transitions between 300 and 520 nm. In 1, 2, 4, and 6, the low-energy bands were mixed 1CT/1π,π*. However, the increased π-donating ability of the pyrenyl substituent(s) in 3 and 5 split the low-energy bands into a pyrene-based 1π,π* transition at 300-380 nm and an intraligand charge transfer (1ILCT) transition at 380-520 nm. All complexes were emissive at room temperature in CH3CN, but the parentage of the emitting state varied depending on the R substituent(s). Complex 1 exhibited predominantly phen ligand-localized 3π,π* emission mixed with metal-to-ligand charge transfer (3MLCT) character, whereas the emission of 2, 4, and 6 was predominantly from the excited-state with 3π,π*/3ILCT/3MLCT character. The emission from 3 and 5 was dominated by pyrene-based 3π,π* states mixed with 3ILCT character. The different natures of the lowest triplet excited states were also reflected by the different spectral features and lifetimes of the triplet transient absorption of these complexes. Complexes 3 and 5 had singlet oxygen quantum yields as high as 81 and 72%, respectively. Both gave submicromolar phototoxicities toward cancer cells (SK-MEL-28 human melanoma) and bacteria ( S. aureus and S. mutans) with visible-light activation (and marginal to no photobiological activity with red light). Their visible-light phototherapeutic indices (PIs) toward SK-MEL-28 cells were 248 for 3 and >435 for 5; PIs were lower in bacteria (≤62) because of their inherent antimicrobial activities. Both complexes were shown to produce substantial amounts of intracellular reactive oxygen species (ROS), which may account for their photobiological activities.


Assuntos
Anti-Infecciosos/química , Irídio/química , Fármacos Fotossensibilizantes/química , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Fotoquimioterapia , Espécies Reativas de Oxigênio/química
3.
Photochem Photobiol ; 95(1): 267-279, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30193398

RESUMO

Three new bis(2,2'-bipyridine)-heteroleptic Ru(II) dyads incorporating thienyl groups (n = 1-3, compounds 1, 2 and 3, respectively) appended to 1,10-phenanthroline were synthesized and characterized to investigate the impact of n on the photophysical and photobiological properties within the series. All three complexes showed unstructured emission near 618 nm from a triplet metal-to-ligand charge transfer (3 MLCT) state with a lifetime (τem ) of approximately 1 µs. Transient absorption measurements revealed an additional excited state that was nonemissive and long-lived (τTA  = 43 µs for 2 and 27 µs for 3), assigned as a triplet intraligand (3 IL) state that was accessible only in 2 and 3. All three complexes were strong singlet oxygen (1 O2 ) sensitizers, with quantum yields (Φ∆ ) for 2 and 3 being the largest (74-78%), and all three were photocytotoxic to cancer cells with visible light activation in the order: 3 > 2 > 1. Cell-free DNA photodamage followed the same trend, where potency increased with decreasing 3 IL energy. Compounds 2 and 3 also showed in vitro photobiological effects with red light (625 nm), where their molar absorptivities were <100 m-1  cm-1 . These findings highlight that Ru(II) dyads derived from α-oligothiophenes directly appended to 1,10-phenanthroline-namely 2 and 3-possess low-lying 3 IL states that are highly photosensitizing, and they may therefore be of interest for photobiological applications such as photodynamic therapy (PDT).


Assuntos
Fenantrolinas/química , Compostos de Rutênio/síntese química , Tiofenos/química , Linhagem Celular Tumoral , Células HL-60 , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Compostos de Rutênio/química , Espectrometria de Massas por Ionização por Electrospray
4.
Viruses ; 10(10)2018 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-30274257

RESUMO

Herpes simplex virus (HSV) infections can be treated with direct acting antivirals like acyclovir and foscarnet, but long-term use can lead to drug resistance, which motivates research into broadly-acting antivirals that can provide a greater genetic barrier to resistance. Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species that inactivate microorganisms. The botanical plant extract OrthoquinTM is a powerful photosensitizer with antimicrobial properties. Here we report that Orthoquin also has antiviral properties. Photoactivated Orthoquin inhibited herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) infection of target cells in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. HSV inactivation required direct contact between Orthoquin and the inoculum, whereas pre-treatment of target cells had no effect. Orthoquin did not cause appreciable damage to viral capsids or premature release of viral genomes, as measured by qPCR for the HSV-1 genome. By contrast, immunoblotting for HSV-1 antigens in purified virion preparations suggested that higher doses of Orthoquin had a physical impact on certain HSV-1 proteins that altered protein mobility or antigen detection. Orthoquin PDI also inhibited the non-enveloped adenovirus (AdV) in a dose-dependent manner, whereas Orthoquin-mediated inhibition of the enveloped vesicular stomatitis virus (VSV) was light-independent. Together, these findings suggest that the broad antiviral effects of Orthoquin-mediated PDI may stem from damage to viral attachment proteins.


Assuntos
Antivirais/uso terapêutico , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Fallopia japonica/química , Células HEK293 , Células HeLa , Herpes Simples/virologia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Raízes de Plantas/química , Células Vero
5.
Inorg Chem ; 57(13): 7694-7712, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29927243

RESUMO

The photophysical and photobiological properties of a new class of cyclometalated ruthenium(II) compounds incorporating π-extended benzo[ h]imidazo[4,5- f]quinoline (IBQ) cyclometalating ligands (C^N) bearing thienyl rings ( n = 1-4, compounds 1-4) were investigated. Their octanol-water partition coefficients (log Po/w) were positive and increased with n. Their absorption and emission energies were red-shifted substantially compared to the analogous Ru(II) diimine (N^N) complexes. They displayed C^N-based intraligand (IL) fluorescence and triplet excited-state absorption that shifted to longer wavelengths with increasing n and N^N-based metal-to-ligand charge transfer (MLCT) phosphorescence that was independent of n. Their photoluminescence lifetimes (τem) ranged from 4-10 ns for 1IL states and 12-18 ns for 3MLCT states. Transient absorption lifetimes (τTA) were 5-8 µs with 355 nm excitation, ascribed to 3IL states that became inaccessible for 1-3 with 532 nm excitation (1-3, τTA = 16-17 ns); the 3IL of 4 only was accessible by lower energy excitation, τTA = 3.8 µs. Complex 4 was nontoxic (EC50 > 300 µM) to SK-MEL-28 melanoma cells and CCD1064-Sk normal skin fibroblasts in the dark, while 3 was selectively cytotoxic to melanoma (EC50= 5.1 µM) only. Compounds 1 and 2 were selective for melanoma cells in the dark, with submicromolar potencies (EC50 = 350-500 nM) and selectivity factors (SFs) around 50. The photocytotoxicities of compounds 1-4 toward melanoma cells were similar, but only compounds 3 and 4 displayed significant phototherapeutic indices (PIs; 3, 43; 4, >1100). The larger cytotoxicities for compounds 1 and 2 were attributed to increased cellular uptake and nuclear accumulation, and possibly related to the DNA-aggregating properties of all four compounds as demonstrated by cell-free gel mobility-shift assays. Together, these results demonstrate a new class of thiophene-containing Ru(II) cyclometalated compounds that contain both highly selective chemotherapeutic agents and extremely potent photocytotoxic agents.


Assuntos
Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Rutênio/química , Tiofenos/química , Linhagem Celular Tumoral , Humanos , Interações Hidrofóbicas e Hidrofílicas , Oxigênio Singlete/metabolismo
6.
Dalton Trans ; 46(25): 8091-8103, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28604869

RESUMO

Five heteroleptic cationic iridium complexes with a π-expansive cyclometalating 2,3-diphenylbenzo[g]quinoxaline (dpbq) ligand (C^N ligand) and different diimine ligands (N^N ligands) (i.e. 2,2'-bipyridine (bpy, 1), phenanthroline (phen, 2), 2-(2-pyridinyl)quinoline (pqu, 3), 2,2'-bisquinoline (bqu, 4), and 2-(quinolin-2-yl)quinoxaline (quqo, 5)) were synthesized and characterized. The lowest-energy singlet electronic transitions (S1 states) were mainly dpbq ligand-centred 1ILCT (intraligand charge transfer)/1MLCT (metal to ligand charge transfer) transitions mixed with some 1π,π* transitions for complexes 1-4 with increased contributions from 1LLCT (ligand to ligand charge transfer) in 3 and 4. For complex 5, the S1 state was switched to the 1LLCT/1MLCT transitions. All five complexes displayed weak near-infrared (NIR) phosphorescence, with maximal emission output spanning 700-1400 nm and quantum yields being on the order of 10-3. The triplet state absorptions of 1-4 all resembled that of the [Ir(dpbq)2Cl]2 dimer with lifetimes of ca. 400 ns, while the TA spectrum of 5 possessed the characteristics of both the quqo ligand and the [Ir(dpbq)2Cl]2 dimer with a bi-exponential decay of ca. 5 µs and 400 ns. While the photophysics of these complexes differ slightly, their theranostic photodynamic therapy (PDT) effects varied drastically. All of the complexes were biologically active toward melanoma cells. Complexes 2 and 3 were the most cytotoxic, with 230-340 nM activity and selectivity factors for melanoma cells over normal skin fibroblasts of 34 to 40 fold. Complexes 2, 3, and 5 became very potent cytotoxins with light activation, with EC50 values as low as 12-18 nM. This potent nanomolar light-triggered activity combined with a lower dark toxicity resulted in 5 having a phototherapeutic index (PI) margin of almost 275. The bpy coligand led to the least amount of dark toxicity of 1, while phen and pqu produced cytotoxic but selective complexes 2 and 3. The quqo coligand produced the most potent complex 5 for in vitro PDT, both in terms of photocytotoxicity and PI. All Ir(iii) complexes exhibited very bright NIR phosphorescence in melanoma cells. The wide range of cytotoxicity and photocytotoxicity effects within a relatively small class of complexes highlights the importance of the identity of the coligand in the biological activity of the π-expansive biscyclometalated Ir(iii) complexes, and their bright NIR emission in live cells demonstrates their potential as theranostic PDT agents.


Assuntos
Complexos de Coordenação/farmacologia , Irídio/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Quinoxalinas/química , Nanomedicina Teranóstica , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Humanos , Ligantes , Estrutura Molecular , Fenantrolinas/química , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Piridinas/química , Quinolinas/química , Espectroscopia de Luz Próxima ao Infravermelho
7.
Inorg Chem ; 56(6): 3245-3259, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28263079

RESUMO

Five heteroleptic tris-diimine ruthenium(II) complexes [RuL(N^N)2](PF6)2 (where L is 3,8-di(benzothiazolylfluorenyl)-1,10-phenanthroline and N^N is 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), 1,4,8,9-tetraazatriphenylene (tatp) (3), dipyrido[3,2-a:2',3'-c]phenazine (dppz) (4), or benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (dppn) (5), respectively) were synthesized. The influence of π-conjugation of the ancillary ligands (N^N) on the photophysical properties of the complexes was investigated by spectroscopic methods and simulated by density functional theory (DFT) and time-dependent DFT. Their ground-state absorption spectra were characterized by intense absorption bands below 350 nm (ligand L localized 1π,π* transitions) and a featureless band centered at ∼410 nm (intraligand charge transfer (1ILCT)/1π,π* transitions with minor contribution from metal-to-ligand charge transfer (1MLCT) transition). For complexes 4 and 5 with dppz and dppn ligands, respectively, broad but very weak absorption (ε < 800 M-1 cm-1) was present from 600 to 850 nm, likely emanating from the spin-forbidden transitions to the triplet excited states. All five complexes showed red-orange phosphorescence at room temperature in CH2Cl2 solution with decreased lifetimes and emission quantum yields, as the π-conjugation of the ancillary ligands increased. Transient absorption (TA) profiles were probed in acetonitrile solutions at room temperature for all of the complexes. Except for complex 5 (which showed dppn-localized 3π,π* absorption with a long lifetime of 41.2 µs), complexes 1-4 displayed similar TA spectral features but with much shorter triplet lifetimes (1-2 µs). Reverse saturable absorption (RSA) was demonstrated for the complexes at 532 nm using 4.1 ns laser pulses, and the strength of RSA decreased in the order: 2 ≥ 1 ≈ 5 > 3 > 4. Complex 5 is particularly attractive as a broadband reverse saturable absorber due to its wide optical window (430-850 nm) and long-lived triplet lifetime in addition to its strong RSA at 532 nm. Complexes 1-5 were also probed as photosensitizing agents for in vitro photodynamic therapy (PDT). Most of them showed a PDT effect, and 5 emerged as the most potent complex with red light (EC50 = 10 µM) and was highly photoselective for melanoma cells (selectivity factor, SF = 13). Complexes 1-5 were readily taken up by cells and tracked by their intracellular luminescence before and after a light treatment. Diagnostic intracellular luminescence increased with increased π-conjugation of the ancillary N^N ligands despite diminishing cell-free phosphorescence in that order. All of the complexes penetrated the nucleus and caused DNA condensation in cell-free conditions in a concentration-dependent manner, which was not influenced by the identity of N^N ligands. Although the mechanism for photobiological activity was not established, complexes 1-5 were shown to exhibit potential as theranostic agents. Together the RSA and PDT studies indicate that developing new agents with long intrinsic triplet lifetimes, high yields for triplet formation, and broad ground-state absorption to near-infrared (NIR) in tandem is a viable approach to identifying promising agents for these applications.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Rutênio/farmacologia , Absorção Fisico-Química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Teoria Quântica , Rutênio/química , Relação Estrutura-Atividade
8.
Inorg Chem ; 56(7): 4121-4132, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28301148

RESUMO

The synthesis and characterization of a series of heteroleptic ruthenium(II) dyads derived from pyrrole-2-carboxylate thionoesters are reported. Ligands bearing a conjugated thiocarbonyl group were found to be more reactive toward Ru(II) complexation compared to analogous all-oxygen pyrrole-2-carboxylate esters, and salient features of the resulting complexes were determined using X-ray crystallography, electronic absorption, and NMR spectroscopy. Selected complexes were evaluated for their potential in photobiological applications, whereupon all compounds demonstrated in vitro photodynamic therapy effects in HL-60 and SK-MEL-28 cells, with low nanomolar activities observed, and exhibited some of the largest photocytotoxicity indices to date (>2000). Importantly, the Ru(II) dyads could be activated by relatively soft doses of visible (100 J cm-2, 29 mW cm-2) or red light (100 J cm-2, 34 mW cm-2), which is compatible with therapeutic applications. Some compounds even demonstrated up to five-fold selectivity for malignant cells over noncancerous cells. These complexes were also shown to photocleave, and in some cases unwind, DNA in cell-free experiments. Thus, this new class of Ru(II) dyads has the capacity to interact with and damage biological macromolecules in the cell, making them attractive agents for photodynamic therapy.

9.
Dalton Trans ; 45(41): 16366-16378, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27711764

RESUMO

The synthesis, photophysics, reverse saturable absorption, and photodynamic therapeutic effect of six cationic biscyclometalated Ir(iii) complexes (1-6) with extended π-conjugation on the diimine ligand and/or the cyclometalating ligands are reported in this paper. All complexes possess ligand-localized 1π,π* absorption bands below 400 nm and charge-transfer absorption bands above 400 nm. They are all emissive in the 500-800 nm range in deoxygenated solutions at room temperature. All complexes exhibit strong and broad triplet excited-state absorption at 430-800 nm, and thus strong reverse saturable absorption for ns laser pulses at 532 nm. Complexes 1-4 are strong reverse saturable absorbers at 532 nm, while complex 6 could be a good candidate as a broadband reverse saturable absorber at 500-850 nm. The degree of π-conjugation of the diimine ligand mainly influences the 1π,π* transitions in their UV-vis absorption spectra, while the degree of π-conjugation of the cyclometalating ligand primarily affects the nature and energies of the lowest singlet and emitting triplet excited states. However, the lowest-energy triplet excited states for complexes 3-6 that contain the same benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (dppn) diimine ligand but different cyclometalating ligands remain the same as the dppn ligand-localized 3π,π* state, which gives rise to the long-lived, strong excited-state absorption in the visible to the near-IR region. All of the complexes exhibit a photodynamic therapeutic effect upon visible or red light activation, with complex 6 possessing the largest phototherapeutic index reported to date (>400) for an Ir(iii) complex. Interactions with biological targets such as DNA suggest that a novel mechanism of action may be at play for the photosensitizing effect. These Ir(iii) complexes also produce strong intracellular luminescence that highlights their potential as theranostic agents.

10.
J Inorg Biochem ; 158: 45-54, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26794708

RESUMO

Three strained Ru(II) metal-organic dyads were prepared and characterized by NMR, mass spectrometry, and analytical HPLC to probe whether these constructs could act as multifunctional photochemotherapy (PCT) agents. The compounds incorporated the crowded 6,6'-dimethyl-2,2'-bipyridine (6,6'-dmb) ligand to impart stoichiometric photocisplatin activity, and imidazo[4,5-f] [1,10]phenanthroline (IP) appended with n thiophene units (nT; n=1-3) to add capacity for singlet oxygen sensitization. With visible light activation, each complex of the series underwent rapid and selective photoejection of 6,6'-dmb in less than 10min, with half-lives (t1/2) as short as 46.3s for [Ru(6,6'-dmb)2(IP-1T)](2+). Photo-triggered ligand loss slowed with increasing n, and was slowest for [Ru(6,6'-dmb)2(IP-3T)](2+) (t1/2=273s). This trend also held for photoadduct formation with DNA; [Ru(6,6'-dmb)2(IP-1T)](2+) produced relaxed circular DNA at the lowest concentrations. Singlet oxygen yields (ΦΔ) increased with n, whereby ΦΔ for [Ru(6,6'-dmb)2(IP-1T)](2+) was only 3%, but increased to 42% on going to [Ru(6,6'-dmb)2(IP-3T)](2+). This photosensitization process was reflected by single-strand breaks in the gel-mobility shift assays of [Ru(6,6'-dmb)2(IP-3T)](2+), but was not discernible for the other compounds. Despite different photochemical and photophysical reactivities, all of the compounds were potent phototoxic agents toward cancer cells (EC50=1-2µM) with relatively short compound-to-light intervals and moderate visible light doses. [Ru(6,6'-dmb)2(IP-3T)](2+) was exceptionally photoactive toward cancer cells at longer intervals (EC50=200nM, PI=750). Phototherapeutic margins increased with n due to decreased dark cytotoxicity for the more π-expansive complexes, making metal-organic dyad [Ru(6,6'-dmb)2(IP-3T)](2+) the best multifunctional PCT agent.


Assuntos
Compostos Organometálicos/química , Rutênio/química , Estrutura Molecular , Fotoquimioterapia , Oxigênio Singlete/química , Tiofenos/química
11.
Inorg Chem ; 55(1): 83-95, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26672769

RESUMO

The purpose of the present study was to investigate the influence of π-expansive cyclometalating ligands on the photophysical and photobiological properties of organometallic Ru(II) compounds. Four compounds with increasing π conjugation on the cyclometalating ligand were prepared, and their structures were confirmed by HPLC, 1D and 2D (1)H NMR, and mass spectrometry. The properties of these compounds differed substantially from their Ru(II) polypyridyl counterparts. Namely, they were characterized by red-shifted absorption, very weak to no room temperature phosphorescence, extremely short phosphorescence state lifetimes (<10 ns), low singlet oxygen quantum yields (0.5-8%), and efficient ligand-centered fluorescence. Three of the metal complexes were very cytotoxic to cancer cells in the dark (EC50 values = 1-2 µM), in agreement with what has traditionally been observed for Ru(II) compounds derived from small C^N ligands. Surprisingly, the complex derived from the most π-expansive cyclometalating ligand exhibited no cytotoxicity in the dark (EC50 > 300 µM) but was phototoxic to cells in the nanomolar regime. Exceptionally large phototherapeutic margins, exceeding 3 orders of magnitude in some cases, were accompanied by bright ligand-centered intracellular fluorescence in cancer cells. Thus, Ru(II) organometallic systems derived from π-expansive cyclometalating ligands, such 4,9,16-triazadibenzo[a,c]napthacene (pbpn), represent the first class of potent light-responsive Ru(II) cyclometalating agents with theranostic potential.


Assuntos
Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Compostos de Rutênio/química , Nanomedicina Teranóstica , Ligantes , Compostos Organometálicos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Compostos de Rutênio/farmacologia , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...