Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Immunol ; 13: 903796, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734183

RESUMO

Heterogeneity of bone marrow mesenchymal stromal cells (MSCs, frequently referred to as "mesenchymal stem cells") clouds biological understanding and hampers their clinical development. In MSC cultures most commonly used in research and therapy, we have identified an MSC subtype characterized by CD317 expression (CD317pos (29.77 ± 3.00% of the total MSC population), comprising CD317dim (28.10 ± 4.60%) and CD317bright (1.67 ± 0.58%) MSCs) and a constitutive interferon signature linked to human disease. We demonstrate that CD317pos MSCs induced cutaneous tissue damage when applied a skin explant model of inflammation, whereas CD317neg MSCs had no effect. Only CD317neg MSCs were able to suppress proliferative cycles of activated human T cells in vitro, whilst CD317pos MSCs increased polarization towards pro-inflammatory Th1 cells and CD317neg cell lines did not. Using an in vivo peritonitis model, we found that CD317neg and CD317pos MSCs suppressed leukocyte recruitment but only CD317neg MSCs suppressed macrophage numbers. Using MSC-loaded scaffolds implanted subcutaneously in immunocompromised mice we were able to observe tissue generation and blood vessel formation with CD317neg MSC lines, but not CD317pos MSC lines. Our evidence is consistent with the identification of an immune stromal cell, which is likely to contribute to specific physiological and pathological functions and influence clinical outcome of therapeutic MSCs.


Assuntos
Células-Tronco Mesenquimais , Animais , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Transdução de Sinais , Células Estromais , Células Th1
3.
Blood Adv ; 5(23): 4877-4889, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34428275

RESUMO

Immune thrombocytopenia (ITP) is an acquired autoimmune condition characterized by both reduced platelet production and the destruction of functionally normal platelets by sustained attack from the immune system. However, the effect of prolonged ITP on the more immature hematopoietic progenitors remains an open area of investigation. By using a murine in vivo model of extended ITP, we revealed that ITP progression drives considerable progenitor expansion and bone marrow (BM) remodeling. Single-cell assays using Lin-Sca1+c-Kit+CD48-CD150+ long-term hematopoietic stem cells (LT-HSCs) revealed elevated LT-HSC activation and proliferation in vitro. However, the increased activation did not come at the expense of LT-HSC functionality as measured by in vivo serial transplantations. ITP progression was associated with considerable BM vasodilation and angiogenesis, as well as a twofold increase in the local production of CXCL12, a cytokine essential for LT-HSC function and BM homing expressed at high levels by LepR+ BM stromal cells. This was associated with a 1.5-fold increase in LepR+ BM stromal cells and a 5.5-fold improvement in progenitor homing to the BM. The increase in stromal cells was transient and reverted back to baseline after platelet count returned to normal, but the vasculature changes in the BM persisted. Together, our data demonstrate that LT-HSCs expand in response to ITP and that LT-HSC functionality during sustained hematopoietic stress is maintained through an adapting BM microenvironment.


Assuntos
Medula Óssea , Púrpura Trombocitopênica Idiopática , Animais , Hematopoese , Células-Tronco Hematopoéticas , Camundongos , Camundongos Endogâmicos C57BL
4.
J Immunol ; 204(11): 2949-2960, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32321759

RESUMO

Despite extensive mapping of long noncoding RNAs in immune cells, their function in vivo remains poorly understood. In this study, we identify over 100 long noncoding RNAs that are differentially expressed within 24 h of Th1 cell activation. Among those, we show that suppression of Malat1 is a hallmark of CD4+ T cell activation, but its complete deletion results in more potent immune responses to infection. This is because Malat1-/- Th1 and Th2 cells express lower levels of the immunosuppressive cytokine IL-10. In vivo, the reduced CD4+ T cell IL-10 expression in Malat1-/- mice underpins enhanced immunity and pathogen clearance in experimental visceral leishmaniasis (Leishmania donovani) but more severe disease in a model of malaria (Plasmodium chabaudi chabaudi AS). Mechanistically, Malat1 regulates IL-10 through enhancing expression of Maf, a key transcriptional regulator of IL-10 Maf expression correlates with Malat1 in single Ag-specific Th cells from P. chabaudi chabaudi AS-infected mice and is downregulated in Malat1-/- Th1 and Th2 cells. The Malat1 RNA is responsible for these effects, as antisense oligonucleotide-mediated inhibition of Malat1 also suppresses Maf and IL-10 levels. Our results reveal that through promoting expression of the Maf/IL-10 axis in effector Th cells, Malat1 is a nonredundant regulator of mammalian immunity.


Assuntos
Interleucina-10/metabolismo , Leishmania donovani/fisiologia , Leishmaniose Visceral/imunologia , Proteínas Proto-Oncogênicas c-maf/metabolismo , RNA Longo não Codificante/genética , Células Th1/imunologia , Células Th2/imunologia , Animais , Feminino , Regulação da Expressão Gênica , Humanos , Tolerância Imunológica , Imunidade/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-maf/genética , Regulação para Cima
5.
Front Immunol ; 10: 2375, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708913

RESUMO

Immunity to intestinal helminths is known to require both innate and adaptive components of the immune system activated along the Type 2 IL-4R/STAT6-dependent pathway. We have found that macrophage migration inhibitory factor (MIF) is essential for the development of effective immunity to the intestinal helminth Heligmosomoides polygyrus, even following vaccination which induces sterile immunity in wild-type mice. A chemical inhibitor of MIF, 4-IPP, was similarly found to compromise anti-parasite immunity. Cellular analyses found that the adaptive arm of the immune response, including IgG1 antibody responses and Th2-derived cytokines, was intact and that Foxp3+ T regulatory cell responses were unaltered in the absence of MIF. However, MIF was found to be an essential cytokine for innate cells, with ablated eosinophilia and ILC2 responses, and delayed recruitment and activation of macrophages to the M2 phenotype (expressing Arginase 1, Chil3, and RELM-α) upon infection of MIF-deficient mice; a macrophage deficit was also seen in wild-type BALB/c mice exposed to 4-IPP. Gene expression analysis of intestinal and lymph node tissues from MIF-deficient and -sufficient infected mice indicated significantly reduced levels of Arl2bp, encoding a factor involved in nuclear localization of STAT3. We further found that STAT3-deficient macrophages expressed less Arginase-1, and that mice lacking STAT3 in the myeloid compartment (LysMCrexSTAT3fl/fl) were unable to reject a secondary infection with H. polygyrus. We thus conclude that in the context of a Type 2 infection, MIF plays a critical role in polarizing macrophages into the protective alternatively-activated phenotype, and that STAT3 signaling may make a previously unrecognized contribution to immunity to helminths.


Assuntos
Imunidade Celular , Oxirredutases Intramoleculares/imunologia , Ativação de Macrófagos , Fatores Inibidores da Migração de Macrófagos/imunologia , Macrófagos/imunologia , Nematospiroides dubius/imunologia , Infecções por Strongylida/imunologia , Linfócitos T Reguladores/imunologia , Animais , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Infecções por Strongylida/genética , Infecções por Strongylida/patologia , Linfócitos T Reguladores/patologia
6.
EMBO Rep ; 20(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833344

RESUMO

Determining the mechanisms that distinguish protective immunity from pathological chronic inflammation remains a fundamental challenge. miR-132 has been shown to play largely immunoregulatory roles in immunity; however, its role in CD4+ T cell function is poorly understood. Here, we show that CD4+ T cells express high levels of miR-132 and that T cell activation leads to miR-132 up-regulation. The transcriptomic hallmark of splenic CD4+ T cells lacking the miR-132/212 cluster during chronic infection is an increase in mRNA levels of ribosomal protein (RP) genes. BTAF1, a co-factor of B-TFIID and novel miR-132/212-3p target, and p300 contribute towards miR-132/212-mediated regulation of RP transcription. Following infection with Leishmania donovani, miR-132-/- CD4+ T cells display enhanced expression of IL-10 and decreased IFNγ. This is associated with reduced hepatosplenomegaly and enhanced pathogen load. The enhanced IL-10 expression in miR-132-/- Th1 cells is recapitulated in vitro following treatment with phenylephrine, a drug reported to promote ribosome synthesis. Our results uncover that miR-132/212-mediated regulation of RP expression is critical for optimal CD4+ T cell activation and protective immunity against pathogens.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Animais , Sítios de Ligação , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/biossíntese , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Ligação Proteica , Baço/imunologia , Baço/metabolismo , Baço/microbiologia , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
7.
Int J Parasitol ; 48(5): 379-385, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29510118

RESUMO

We recently reported the discovery of a new parasite-derived protein that functionally mimics the immunosuppressive cytokine transforming growth factor (TGF)-ß. The Heligmosomoides polygyrus TGF-ß Mimic (Hp-TGM) shares no homology to any TGF-ß family member, however it binds the mammalian TGF-ß receptor and induces expression of Foxp3, the canonical transcription factor of both mouse and human regulatory T cells. Hp-TGM consists of five atypical Complement Control Protein (CCP, Pfam 00084) domains, each lacking certain conserved residues and 12-15 amino acids longer than the 60-70 amino acids consensus domain, but with a recognizable 3-cysteine, tryptophan, cysteine motif. We now report on the identification of a family of nine related Hp-TGM homologues represented in the secreted proteome and transcriptome of H. polygyrus. Recombinant proteins from five of the nine new TGM members were tested for TGF-ß activity, but only two were functionally active in an MFB-F11 reporter assay, and by the induction of T cell Foxp3 expression. Sequence comparisons reveal that proteins with functional activity are similar or identical to Hp-TGM across the first three CCP domains, but more variable in domains 4 and 5. Inactive proteins diverged in all domains, or lacked some domains entirely. Testing truncated versions of Hp-TGM confirmed that domains 1-3 are essential for full activity in vitro, while domains 4 and 5 are not required. Further studies will elucidate whether these latter domains fulfill other functions in promoting host immune regulation during infection and if the more divergent family members play other roles in immunomodulation.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Nematospiroides dubius/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Clonagem Molecular , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Helminto/genética , Camundongos , Baço/citologia , Fator de Crescimento Transformador beta/genética
8.
Nat Commun ; 8(1): 1741, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170498

RESUMO

Helminth parasites defy immune exclusion through sophisticated evasion mechanisms, including activation of host immunosuppressive regulatory T (Treg) cells. The mouse parasite Heligmosomoides polygyrus can expand the host Treg population by secreting products that activate TGF-ß signalling, but the identity of the active molecule is unknown. Here we identify an H. polygyrus TGF-ß mimic (Hp-TGM) that replicates the biological and functional properties of TGF-ß, including binding to mammalian TGF-ß receptors and inducing mouse and human Foxp3+ Treg cells. Hp-TGM has no homology with mammalian TGF-ß or other members of the TGF-ß family, but is a member of the complement control protein superfamily. Thus, our data indicate that through convergent evolution, the parasite has acquired a protein with cytokine-like function that is able to exploit an endogenous pathway of immunoregulation in the host.


Assuntos
Mimetismo Molecular/imunologia , Nematospiroides dubius/imunologia , Nematospiroides dubius/patogenicidade , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Helmintos/química , Antígenos de Helmintos/genética , Antígenos de Helmintos/imunologia , Feminino , Proteínas de Helminto/química , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Evasão da Resposta Imune/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mimetismo Molecular/genética , Nematospiroides dubius/genética , Ligação Proteica , Domínios Proteicos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia
9.
Immunity ; 47(4): 739-751.e5, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045903

RESUMO

Infection by helminth parasites is associated with amelioration of allergic reactivity, but mechanistic insights into this association are lacking. Products secreted by the mouse parasite Heligmosomoides polygyrus suppress type 2 (allergic) immune responses through interference in the interleukin-33 (IL-33) pathway. Here, we identified H. polygyrus Alarmin Release Inhibitor (HpARI), an IL-33-suppressive 26-kDa protein, containing three predicted complement control protein (CCP) modules. In vivo, recombinant HpARI abrogated IL-33, group 2 innate lymphoid cell (ILC2) and eosinophilic responses to Alternaria allergen administration, and diminished eosinophilic responses to Nippostrongylus brasiliensis, increasing parasite burden. HpARI bound directly to both mouse and human IL-33 (in the cytokine's activated state) and also to nuclear DNA via its N-terminal CCP module pair (CCP1/2), tethering active IL-33 within necrotic cells, preventing its release, and forestalling initiation of type 2 allergic responses. Thus, HpARI employs a novel molecular strategy to suppress type 2 immunity in both infection and allergy.


Assuntos
Proteínas de Helminto/imunologia , Interleucina-33/imunologia , Nematospiroides dubius/imunologia , Infecções por Strongylida/imunologia , Alérgenos/imunologia , Alternaria/imunologia , Sequência de Aminoácidos , Animais , Western Blotting , Eosinófilos/imunologia , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita/imunologia , Humanos , Imunidade Inata/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33/genética , Interleucina-33/metabolismo , Linfócitos/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nematospiroides dubius/genética , Nematospiroides dubius/metabolismo , Ligação Proteica/imunologia , Receptores de Interleucina/imunologia , Receptores de Interleucina/metabolismo , Homologia de Sequência de Aminoácidos , Infecções por Strongylida/metabolismo , Infecções por Strongylida/parasitologia
10.
PLoS Pathog ; 13(3): e1006233, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28334040

RESUMO

Rapid reprogramming of the macrophage activation phenotype is considered important in the defense against consecutive infection with diverse infectious agents. However, in the setting of persistent, chronic infection the functional importance of macrophage-intrinsic adaptation to changing environments vs. recruitment of new macrophages remains unclear. Here we show that resident peritoneal macrophages expanded by infection with the nematode Heligmosomoides polygyrus bakeri altered their activation phenotype in response to infection with Salmonella enterica ser. Typhimurium in vitro and in vivo. The nematode-expanded resident F4/80high macrophages efficiently upregulated bacterial induced effector molecules (e.g. MHC-II, NOS2) similarly to newly recruited monocyte-derived macrophages. Nonetheless, recruitment of blood monocyte-derived macrophages to Salmonella infection occurred with equal magnitude in co-infected animals and caused displacement of the nematode-expanded, tissue resident-derived macrophages from the peritoneal cavity. Global gene expression analysis revealed that although nematode-expanded resident F4/80high macrophages made an anti-bacterial response, this was muted as compared to newly recruited F4/80low macrophages. However, the F4/80high macrophages adopted unique functional characteristics that included enhanced neutrophil-stimulating chemokine production. Thus, our data provide important evidence that plastic adaptation of MΦ activation does occur in vivo, but that cellular plasticity is outweighed by functional capabilities specific to the tissue origin of the cell.


Assuntos
Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Salmonelose Animal/microbiologia , Infecções por Strongylida/microbiologia , Animais , Coinfecção , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Nematospiroides dubius/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Salmonelose Animal/imunologia , Salmonella typhi/imunologia , Infecções por Strongylida/imunologia
11.
Nucleic Acids Res ; 44(20): 9942-9955, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27407113

RESUMO

MicroRNAs (miRNAs) are short non-coding RNAs that silence mRNAs. They are generated following transcription and cleavage by the DROSHA/DGCR8 and DICER/TRBP/PACT complexes. Although it is known that components of the miRNA biogenesis machinery can be phosphorylated, it remains poorly understood how these events become engaged during physiological cellular activation. We demonstrate that S6 kinases can phosphorylate the extended C-terminal domain of TRBP and interact with TRBP in situ in primary cells. TRBP serines 283/286 are essential for S6K-mediated TRBP phosphorylation, optimal expression of TRBP, and the S6K-TRBP interaction in human primary cells. We demonstrate the functional relevance of this interaction in primary human dermal lymphatic endothelial cells (HDLECs). Angiopoietin-1 (ANG1) can augment miRNA biogenesis in HDLECs through enhancing TRBP phosphorylation and expression in an S6K2-dependent manner. We propose that the S6K2/TRBP node controls miRNA biogenesis in HDLECs and provides a molecular link between the mTOR pathway and the miRNA biogenesis machinery.


Assuntos
Células Endoteliais/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Angiopoietina-1/farmacologia , Linhagem Celular , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
12.
J Immunol ; 196(5): 2262-71, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26819205

RESUMO

Helminth infections have been suggested to impair the development and outcome of Th1 responses to vaccines and intracellular microorganisms. However, there are limited data regarding the ability of intestinal nematodes to modulate Th1 responses at sites distal to the gut. In this study, we have investigated the effect of the intestinal nematode Heligmosomoides polygyrus bakeri on Th1 responses to Mycobacterium bovis bacillus Calmette-Guérin (BCG). We found that H. polygyrus infection localized to the gut can mute BCG-specific CD4(+) T cell priming in both the spleen and skin-draining lymph nodes. Furthermore, H. polygyrus infection reduced the magnitude of delayed-type hypersensitivity (DTH) to PPD in the skin. Consequently, H. polygyrus-infected mice challenged with BCG had a higher mycobacterial load in the liver compared with worm-free mice. The excretory-secretory product from H. polygyrus (HES) was found to dampen IFN-γ production by mycobacteria-specific CD4(+) T cells. This inhibition was dependent on the TGF-ßR signaling activity of HES, suggesting that TGF-ß signaling plays a role in the impaired Th1 responses observed coinfection with worms. Similar to results with mycobacteria, H. polygyrus-infected mice displayed an increase in skin parasite load upon secondary infection with Leishmania major as well as a reduction in DTH responses to Leishmania Ag. We show that a nematode confined to the gut can mute T cell responses to mycobacteria and impair control of secondary infections distal to the gut. The ability of intestinal helminths to reduce DTH responses may have clinical implications for the use of skin test-based diagnosis of microbial infections.


Assuntos
Coinfecção , Gastroenteropatias/imunologia , Infecções por Mycobacterium/imunologia , Infecções por Nematoides/imunologia , Animais , Antígenos de Bactérias/imunologia , Antígenos de Helmintos/imunologia , Movimento Celular/imunologia , Doença Crônica , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Gastroenteropatias/microbiologia , Gastroenteropatias/parasitologia , Gastroenteropatias/patologia , Interações Hospedeiro-Parasita/imunologia , Interações Hospedeiro-Patógeno/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Infecções por Mycobacterium/microbiologia , Infecções por Mycobacterium/patologia , Mycobacterium bovis/imunologia , Infecções por Nematoides/parasitologia , Infecções por Nematoides/patologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
13.
Microbiol Spectr ; 4(6)2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28087937

RESUMO

Many major tropical diseases are caused by long-lived helminth parasites that are able to survive by modulation of the host immune system, including the innate compartment of myeloid cells. In particular, dendritic cells and macrophages show markedly altered phenotypes during parasite infections. In addition, many specialized subsets such as eosinophils and basophils expand dramatically in response to these pathogens. The changes in phenotype and function, and their effects on both immunity to infection and reactivity to bystander antigens such as allergens, are discussed.


Assuntos
Helmintíase/imunologia , Células Mieloides/imunologia , Células Mieloides/fisiologia , Animais , Humanos , Fenótipo
14.
Int J Parasitol ; 46(3): 157-170, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26688390

RESUMO

Glycan molecules from helminth parasites have been associated with diverse biological functions ranging from interactions with neighbouring host cell populations to down-modulation of specific host immunity. Glycoproteins secreted by the intestinal nematode Heligmosomoides polygyrus are of particular interest as the excretory-secretory products (termed HES) of this parasite contain both heat-labile and heat-stable components with immunomodulatory effects. We used MALDI-TOF-MS and LC-MS/MS to analyse the repertoire of N- and O-linked glycans released from Heligmosomoides polygyrus excretory-secretory products by PNGase A and F, ß-elimination and hydrazinolysis revealing a broad range of structures including novel methylhexose- and methylfucose-containing glycans. Monoclonal antibodies to two immunodominant glycans of H. polygyrus, previously designated Glycans A and B, were found to react by glycan array analysis to a methyl-hexose-rich fraction and to a sulphated LacDiNAc (LDN; GalNAcß1-4GlcNAc) structure, respectively. We also analysed the glycan repertoire of a major glycoprotein in Heligmosomoides polygyrus excretory-secretory products, VAL-2, which contains many glycan structures present in Heligmosomoides polygyrus excretory-secretory products including Glycan A. However, it was found that this set of glycans is not responsible for the heat-stable immunomodulatory properties of Heligmosomoides polygyrus excretory-secretory products, as revealed by the inability of VAL-2 to inhibit allergic lung inflammation. Taken together, these studies reveal that H. polygyrus secretes a diverse range of antigenic glycoconjugates, and provides a framework to explore the biological and immunomodulatory roles they may play within the mammalian host.


Assuntos
Glicoproteínas/química , Proteínas de Helminto/química , Nematospiroides dubius/imunologia , Polissacarídeos/química , Infecções por Strongylida/parasitologia , Animais , Feminino , Glicoproteínas/genética , Glicoproteínas/imunologia , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Humanos , Intestinos/química , Intestinos/imunologia , Masculino , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Nematospiroides dubius/química , Nematospiroides dubius/genética , Polissacarídeos/genética , Polissacarídeos/imunologia , Infecções por Strongylida/imunologia
15.
PLoS Pathog ; 11(3): e1004676, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25816012

RESUMO

Over 25% of the world's population are infected with helminth parasites, the majority of which colonise the gastrointestinal tract. However, no vaccine is yet available for human use, and mechanisms of protective immunity remain unclear. In the mouse model of Heligmosomoides polygyrus infection, vaccination with excretory-secretory (HES) antigens from adult parasites elicits sterilising immunity. Notably, three purified HES antigens (VAL-1, -2 and -3) are sufficient for effective vaccination. Protection is fully dependent upon specific IgG1 antibodies, but passive transfer confers only partial immunity to infection, indicating that cellular components are also required. Moreover, immune mice show greater cellular infiltration associated with trapping of larvae in the gut wall prior to their maturation. Intra-vital imaging of infected intestinal tissue revealed a four-fold increase in extravasation by LysM+GFP+ myeloid cells in vaccinated mice, and the massing of these cells around immature larvae. Mice deficient in FcRγ chain or C3 complement component remain fully immune, suggesting that in the presence of antibodies that directly neutralise parasite molecules, the myeloid compartment may attack larvae more quickly and effectively. Immunity to challenge infection was compromised in IL-4Rα- and IL-25-deficient mice, despite levels of specific antibody comparable to immune wild-type controls, while deficiencies in basophils, eosinophils or mast cells or CCR2-dependent inflammatory monocytes did not diminish immunity. Finally, we identify a suite of previously uncharacterised heat-labile vaccine antigens with homologs in human and veterinary parasites that together promote full immunity. Taken together, these data indicate that vaccine-induced immunity to intestinal helminths involves IgG1 antibodies directed against secreted proteins acting in concert with IL-25-dependent Type 2 myeloid effector populations.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Antígenos de Helmintos/imunologia , Imunoglobulina G/imunologia , Interleucina-4/imunologia , Interleucinas/imunologia , Nematospiroides dubius/imunologia , Infecções por Strongylida/imunologia , Vacinação , Animais , Anticorpos Anti-Helmínticos/genética , Humanos , Imunoglobulina G/genética , Interleucina-4/genética , Interleucinas/genética , Larva/imunologia , Camundongos , Camundongos Knockout , Infecções por Strongylida/genética , Infecções por Strongylida/prevenção & controle
16.
Immunobiology ; 220(7): 924-33, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25700973

RESUMO

Tissue resident macrophages have vital homeostatic roles in many tissues but their roles are less well defined in the heart. The present study aimed to identify the density, polarisation status and distribution of macrophages in the healthy murine heart and to investigate their ability to respond to immune challenge. Histological analysis of hearts from CSF-1 receptor (csf1-GFP; MacGreen) and CX3CR1 (Cx3cr1(GFP/+)) reporter mice revealed a sparse population of GFP positive macrophages that were evenly distributed throughout the left and right ventricular free walls and septum. F4/80+CD11b+ cardiac macrophages, sorted from myocardial homogenates, were able to phagocytose fluorescent beads in vitro and expressed markers typical of both 'M1' (IL-1ß, TNF and CCR2) and 'M2' activation (Ym1, Arg 1, RELMα and IL-10), suggesting no specific polarisation in healthy myocardium. Exposure to Th2 challenge by infection of mice with helminth parasites Schistosoma mansoni, or Heligmosomoides polygyrus, resulted in an increase in cardiac macrophage density, adoption of a stellate morphology and increased expression of Ym1, RELMα and CD206 (mannose receptor), indicative of 'M2' polarisation. This was dependent on recruitment of Ly6ChighCCR2+ monocytes and was accompanied by an increase in collagen content. In conclusion, in the healthy heart resident macrophages are relatively sparse and have a phagocytic role. Following Th2 challenge this population expands due to monocyte recruitment and adopts an 'M2' phenotype associated with increased tissue fibrosis.


Assuntos
Coração/parasitologia , Macrófagos/imunologia , Miocárdio/imunologia , Esquistossomose mansoni/imunologia , Infecções por Strongylida/imunologia , Animais , Antígenos de Diferenciação/metabolismo , Antígeno CD11b/metabolismo , Receptor 1 de Quimiocina CX3C , Proteínas de Fluorescência Verde/genética , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Lectinas/biossíntese , Lectinas Tipo C/biossíntese , Receptor de Manose , Lectinas de Ligação a Manose/biossíntese , Camundongos , Camundongos Knockout , Nematospiroides dubius/imunologia , Fagocitose/imunologia , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptores de Superfície Celular/biossíntese , Receptores de Quimiocinas/genética , Schistosoma mansoni/imunologia , Esquistossomose mansoni/parasitologia , Infecções por Strongylida/parasitologia , Células Th2/imunologia , beta-N-Acetil-Hexosaminidases/biossíntese
17.
Gut Microbes ; 5(4): 522-32, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25144609

RESUMO

The intestinal microbiota are pivotal in determining the developmental, metabolic and immunological status of the mammalian host. However, the intestinal tract may also accommodate pathogenic organisms, including helminth parasites which are highly prevalent in most tropical countries. Both microbes and helminths must evade or manipulate the host immune system to reside in the intestinal environment, yet whether they influence each other's persistence in the host remains unknown. We now show that abundance of Lactobacillus bacteria correlates positively with infection with the mouse intestinal nematode parasite, Heligmosomoides polygyrus, as well as with heightened regulatory T cell (Treg) and Th17 responses. Moreover, H. polygyrus raises Lactobacillus species abundance in the duodenum of C57BL/6 mice, which are highly susceptible to H. polygyrus infection, but not in BALB/c mice, which are relatively resistant. Sequencing of samples at the bacterial gyrB locus identified the principal Lactobacillus species as L. taiwanensis, a previously characterized rodent commensal. Experimental administration of L. taiwanensis to BALB/c mice elevates regulatory T cell frequencies and results in greater helminth establishment, demonstrating a causal relationship in which commensal bacteria promote infection with an intestinal parasite and implicating a bacterially-induced expansion of Tregs as a mechanism of greater helminth susceptibility. The discovery of this tripartite interaction between host, bacteria and parasite has important implications for both antibiotic and anthelmintic use in endemic human populations.


Assuntos
Trato Gastrointestinal/microbiologia , Lactobacillus/fisiologia , Interações Microbianas , Nematospiroides dubius/fisiologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Trato Gastrointestinal/imunologia , Interações Hospedeiro-Patógeno , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nematospiroides dubius/crescimento & desenvolvimento , Nematospiroides dubius/imunologia
18.
J Immunol ; 193(6): 2984-93, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25114104

RESUMO

Helminth parasites remain one of the most common causes of infections worldwide, yet little is still known about the immune signaling pathways that control their expulsion. C57BL/6 mice are chronically susceptible to infection with the gastrointestinal helminth parasite Heligmosomoides polygyrus. In this article, we report that C57BL/6 mice lacking the adapter protein MyD88, which mediates signaling by TLRs and IL-1 family members, showed enhanced immunity to H. polygyrus infection. Alongside increased parasite expulsion, MyD88-deficient mice showed heightened IL-4 and IL-17A production from mesenteric lymph node CD4(+) cells. In addition, MyD88(-/-) mice developed substantial numbers of intestinal granulomas around the site of infection, which were not seen in MyD88-sufficient C57BL/6 mice, nor when signaling through the adapter protein TRIF (TIR domain-containing adapter-inducing IFN-ß adapter protein) was also ablated. Mice deficient solely in TLR2, TLR4, TLR5, or TLR9 did not show enhanced parasite expulsion, suggesting that these TLRs signal redundantly to maintain H. polygyrus susceptibility in wild-type mice. To further investigate signaling pathways that are MyD88 dependent, we infected IL-1R1(-/-) mice with H. polygyrus. This genotype displayed heightened granuloma numbers compared with wild-type mice, but without increased parasite expulsion. Thus, the IL-1R-MyD88 pathway is implicated in inhibiting granuloma formation; however, protective immunity in MyD88-deficient mice appears to be granuloma independent. Like IL-1R1(-/-) and MyD88(-/-) mice, animals lacking signaling through the type 1 IFN receptor (i.e., IFNAR1(-/-)) also developed intestinal granulomas. Hence, IL-1R1, MyD88, and type 1 IFN receptor signaling may provide pathways to impede granuloma formation in vivo, but additional MyD88-mediated signals are associated with inhibition of protective immunity in susceptible C57BL/6 mice.


Assuntos
Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Nematospiroides dubius/imunologia , Infecções por Strongylida/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Granuloma/genética , Granuloma/imunologia , Interleucina-17/biossíntese , Interleucina-4/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Receptores Tipo I de Interleucina-1/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Infecções por Strongylida/parasitologia , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Receptor 5 Toll-Like/genética , Receptor Toll-Like 9/genética
19.
Expert Rev Vaccines ; 13(4): 473-87, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24606541

RESUMO

Helminth parasites infect over one fourth of the human population and are highly prevalent in livestock worldwide. In model systems, parasites are strongly immunomodulatory, but the immune system can be driven to expel them by prior vaccination. However, no vaccines are currently available for human use. Recent advances in vaccination with recombinant helminth antigens have been successful against cestode infections of livestock and new vaccines are being tested against nematode parasites of animals. Numerous vaccine antigens are being defined for a wide range of helminth parasite species, but greater understanding is needed to define the mechanisms of vaccine-induced immunity, to lay a rational platform for new vaccines and their optimal design. With human trials underway for hookworm and schistosomiasis vaccines, a greater integration between veterinary and human studies will highlight the common molecular and mechanistic pathways, and accelerate progress towards reducing the global health burden of helminth infection.


Assuntos
Helmintíase Animal/prevenção & controle , Helmintíase/prevenção & controle , Helmintos/imunologia , Vacinação/métodos , Vacinas/administração & dosagem , Vacinas/imunologia , Animais , Ensaios Clínicos como Assunto , Helmintíase/epidemiologia , Helmintíase/imunologia , Helmintíase Animal/epidemiologia , Helmintíase Animal/imunologia , Humanos , Vacinas/isolamento & purificação
20.
PLoS Pathog ; 10(2): e1003930, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586152

RESUMO

Human lymphatic filariasis is a major tropical disease transmitted through mosquito vectors which take up microfilarial larvae from the blood of infected subjects. Microfilariae are produced by long-lived adult parasites, which also release a suite of excretory-secretory products that have recently been subject to in-depth proteomic analysis. Surprisingly, the most abundant secreted protein of adult Brugia malayi is triose phosphate isomerase (TPI), a glycolytic enzyme usually associated with the cytosol. We now show that while TPI is a prominent target of the antibody response to infection, there is little antibody-mediated inhibition of catalytic activity by polyclonal sera. We generated a panel of twenty-three anti-TPI monoclonal antibodies and found only two were able to block TPI enzymatic activity. Immunisation of jirds with B. malayi TPI, or mice with the homologous protein from the rodent filaria Litomosoides sigmodontis, failed to induce neutralising antibodies or protective immunity. In contrast, passive transfer of neutralising monoclonal antibody to mice prior to implantation with adult B. malayi resulted in 60-70% reductions in microfilarial levels in vivo and both oocyte and microfilarial production by individual adult females. The loss of fecundity was accompanied by reduced IFNγ expression by CD4⁺ T cells and a higher proportion of macrophages at the site of infection. Thus, enzymatically active TPI plays an important role in the transmission cycle of B. malayi filarial parasites and is identified as a potential target for immunological and pharmacological intervention against filarial infections.


Assuntos
Brugia Malayi/patogenicidade , Filariose Linfática/enzimologia , Microfilárias , Triose-Fosfato Isomerase/metabolismo , Animais , Anticorpos Anti-Helmínticos/imunologia , Anticorpos Neutralizantes/imunologia , Western Blotting , Brugia Malayi/enzimologia , Brugia Malayi/imunologia , Filariose Linfática/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Gerbillinae , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA