Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 10: 471, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057578

RESUMO

Diatoms adapt to changing environmental conditions in very efficient ways. Among the mechanisms that can be activated, the reorientation of carbon metabolism is crucial because it allows the storage of energy into energy-dense molecules, typically lipids. Beside their roles in physiology, lipids are commercially interesting compounds. Therefore studies dealing with this topic are relevant for both basic and applied science. Although the molecular mechanisms involved in the reorientation of carbon metabolism as a response to a deficiency in nutrients such as nitrogen or phosphorus has been partially elucidated, the impacts of carbon availability on the implementation of the reorientation mechanisms remain unclear. Indeed, it has not been determined if the same types of mechanisms are activated under carbon and other nutrient deficiencies or limitations. The first aim of this work was to get insights into the physiological, biological and molecular processes triggered by progressive carbon starvation in the model diatom Phaeodactylum tricornutum. The second aim was to investigate the effects of the growth light intensity on these processes. For such a purpose three different photon flux densities 30, 300, and 1000 µmol photons m-2 s-1 were used. The results presented here demonstrate that under carbon limitation, diatom cells still reorient carbon metabolism toward either phosphoenolpyruvate or pyruvate, which serves as a hub for the production of more complex molecules. The distribution of carbon atoms between the different pathways was partially affected by the growth photon flux density because low light (LL) provides conditions for the accumulation of chrysolaminarin, while medium light mostly stimulated lipid synthesis. A significant increase in the amount of proteins was observed under high light (HL).

2.
Cell Mol Life Sci ; 75(12): 2153-2176, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29541792

RESUMO

Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.


Assuntos
Clorófitas/metabolismo , Cloroplastos/metabolismo , Glaucófitas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Rodófitas/metabolismo , Transporte Biológico , Clorófitas/química , Clorófitas/genética , Cloroplastos/química , Cloroplastos/genética , Glaucófitas/química , Glaucófitas/genética , Transporte de Íons , Íons/metabolismo , Proteínas de Membrana Transportadoras/análise , Proteínas de Membrana Transportadoras/genética , Redes e Vias Metabólicas , Fotossíntese , Filogenia , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Rodófitas/química , Rodófitas/genética
3.
Philos Trans R Soc Lond B Biol Sci ; 372(1728)2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28717022

RESUMO

In this study, we investigated the responses of Phaeodactylum tricornutum cells acclimated to 300 µmol m-2 s-1 photon flux density to an increase (1000 µmol m-2 s-1) or decrease (30 µmol m-2 s-1) in photon flux densities. The light shift occurred abruptly after 5 days of growth and the acclimation to new conditions was followed during the next 6 days at the physiological and molecular levels. The molecular data reflect a rearrangement of carbon metabolism towards the production of phosphoenolpyruvic acid (PEP) and/or pyruvate. These intermediates were used differently by the cell as a function of the photon flux density: under low light, photosynthesis was depressed while respiration was increased. Under high light, lipids and proteins accumulated. Of great interest, under high light, the genes coding for the synthesis of aromatic amino acids and phenolic compounds were upregulated suggesting that the shikimate pathway was activated.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.


Assuntos
Dióxido de Carbono/metabolismo , Diatomáceas/metabolismo , Luz , Fotossíntese , Carbono/metabolismo , Diatomáceas/efeitos da radiação
4.
Philos Trans R Soc Lond B Biol Sci ; 369(1640): 20130243, 2014 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-24591723

RESUMO

Providing an adequate quantity and quality of food for the escalating human population under changing climatic conditions is currently a great challenge. In outdoor cultures, sunlight provides energy (through photosynthesis) for photosynthetic organisms. They also use light quality to sense and respond to their environment. To increase the production capacity, controlled growing systems using artificial lighting have been taken into consideration. Recent development of light-emitting diode (LED) technologies presents an enormous potential for improving plant growth and making systems more sustainable. This review uses selected examples to show how LED can mimic natural light to ensure the growth and development of photosynthetic organisms, and how changes in intensity and wavelength can manipulate the plant metabolism with the aim to produce functionalized foods.


Assuntos
Agricultura/métodos , Metabolismo Energético/fisiologia , Luz , Iluminação/instrumentação , Fotossíntese/fisiologia , Desenvolvimento Vegetal/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Modelos Biológicos , Fotossíntese/efeitos da radiação
5.
Mar Drugs ; 11(9): 3425-71, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-24022731

RESUMO

Phytoplankton is acknowledged to be a very diverse source of bioactive molecules. These compounds play physiological roles that allow cells to deal with changes of the environmental constrains. For example, the diversity of light harvesting pigments allows efficient photosynthesis at different depths in the seawater column. Identically, lipid composition of cell membranes can vary according to environmental factors. This, together with the heterogenous evolutionary origin of taxa, makes the chemical diversity of phytoplankton compounds much larger than in terrestrial plants. This contribution is dedicated to pigments and lipids synthesized within or from plastids/photosynthetic membranes. It starts with a short review of cyanobacteria and microalgae phylogeny. Then the bioactivity of pigments and lipids (anti-oxidant, anti-inflammatory, anti-mutagenic, anti-cancer, anti-obesity, anti-allergic activities, and cardio- neuro-, hepato- and photoprotective effects), alone or in combination, is detailed. To increase the cellular production of bioactive compounds, specific culture conditions may be applied (e.g., high light intensity, nitrogen starvation). Regardless of the progress made in blue biotechnologies, the production of bioactive compounds is still limited. However, some examples of large scale production are given, and perspectives are suggested in the final section.


Assuntos
Produtos Biológicos/metabolismo , Lipídeos/biossíntese , Fitoplâncton/metabolismo , Pigmentos Biológicos/metabolismo , Plastídeos/metabolismo , Água do Mar/microbiologia , Animais , Cianobactérias/metabolismo , Humanos , Fotossíntese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA