Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38701785

RESUMO

In mammals, the circadian clock network drives daily rhythms of tissue-specific homeostasis. To dissect daily inter-tissue communication, we constructed a mouse minimal clock network comprising only two nodes: the peripheral epidermal clock and the central brain clock. By transcriptomic and functional characterization of this isolated connection, we identified a gatekeeping function of the peripheral tissue clock with respect to systemic inputs. The epidermal clock concurrently integrates and subverts brain signals to ensure timely execution of epidermal daily physiology. Timely cell-cycle termination in the epidermal stem cell compartment depends upon incorporation of clock-driven signals originating from the brain. In contrast, the epidermal clock corrects or outcompetes potentially disruptive feeding-related signals to ensure the optimal timing of DNA replication. Together, we present an approach for cataloging the systemic dependencies of daily temporal organization in a tissue and identify an essential gate-keeping function of peripheral circadian clocks that guarantees tissue homeostasis.

2.
Cells ; 13(2)2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38247842

RESUMO

Internal circadian clocks coordinate 24 h rhythms in behavior and physiology. Many immune functions show daily oscillations, and cellular circadian clocks can impact immune functions and disease outcome. Inflammation may disrupt circadian clocks in peripheral tissues and innate immune cells. However, it remains elusive if chronic inflammation impacts adaptive immune cell clock, e.g., in CD4+ and CD8+ T lymphocytes. We studied this in the experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis, as an established experimental paradigm for chronic inflammation. We analyzed splenic T cell circadian clock and immune gene expression rhythms in mice with late-stage EAE, CFA/PTx-treated, and untreated mice. In both treatment groups, clock gene expression rhythms were altered with differential effects for baseline expression and peak phase compared with control mice. Most immune cell marker genes tested in this study did not show circadian oscillations in either of the three groups, but time-of-day- independent alterations were observed in EAE and CFA/PTx compared to control mice. Notably, T cell effects were likely independent of central clock function as circadian behavioral rhythms in EAE mice remained intact. Together, chronic inflammation induced by CFA/PTx treatment and EAE immunization has lasting effects on circadian rhythms in peripheral immune cells.


Assuntos
Linfócitos T CD8-Positivos , Encefalomielite Autoimune Experimental , Animais , Camundongos , Inflamação , Ritmo Circadiano , Linfócitos T CD4-Positivos
3.
Mol Metab ; 69: 101691, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36746332

RESUMO

OBJECTIVE: Snacking, i.e., the intake of small amounts of palatable food items, is a common behavior in modern societies, promoting overeating and obesity. Shifting food intake into the daily rest phase disrupts circadian rhythms and is also known to stimulate weight gain. We therefore hypothesized that chronic snacking in the inactive phase may promote body weight gain and that this effect is based on disruption of circadian clocks. METHODS: Male mice were fed a daily chocolate snack either during their rest or their active phase and body weight development and metabolic parameters were investigated. Snacking experiments were repeated in constant darkness and in clock-deficient mutant mice to examine the role of external and internal time cues in mediating the metabolic effects of snacking. RESULTS: Chronic snacking in the rest phase increased body weight gain and disrupted metabolic circadian rhythms in energy expenditure, body temperature, and locomotor activity. Additionally, these rest phase snacking mice assimilated more energy during the inactive phase. Body weight remained increased in rest phase snacking wildtype mice in constant darkness as well as in clock-deficient mutant mice under a regular light-dark cycle compared to mice snacking in the active phase. Weight gain effects were abolished in clock-deficient mice in constant darkness. CONCLUSIONS: Our data suggest that mistimed snacking increases energy resorption and promotes body weight gain. This effect requires a functional circadian clock at least under constant darkness conditions.


Assuntos
Lanches , Aumento de Peso , Camundongos , Animais , Masculino , Ritmo Circadiano , Obesidade , Peso Corporal
4.
Sci Rep ; 12(1): 1601, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102210

RESUMO

24-h rhythms in physiology and behaviour are orchestrated by an endogenous circadian clock system. In mammals, these clocks are hierarchically organized with a master pacemaker residing in the hypothalamic suprachiasmatic nucleus (SCN). External time signals-so-called zeitgebers-align internal with geophysical time. During shift work, zeitgeber input conflicting with internal time induces circadian desynchrony which, in turn, promotes metabolic and psychiatric disorders. However, little is known about how internal desynchrony is expressed at the molecular level under chronodisruptive environmental conditions. We here investigated the effects of zeitgeber misalignment on circadian molecular organisation by combining 28-h light-dark (LD-28) cycles with either 24-h (FF-24) or 28-h feeding-fasting (FF-28) regimes in mice. We found that FF cycles showed strong effects on peripheral clocks, while having little effect on centrally coordinated activity rhythms. Systemic, i.e., across-tissue internal circadian desynchrony was profoundly induced within four days in LD-28/FF-24, while phase coherence between tissue clocks was maintained to a higher degree under LD-28/FF-28 conditions. In contrast, temporal coordination of clock gene activity across tissues was reduced under LD-28/FF-28 conditions compared to LD-28/FF-24. These results indicate that timed food intake may improve internal synchrony under disruptive zeitgeber conditions but may, at the same time, weaken clock function at the tissue level.


Assuntos
Núcleo Supraquiasmático
5.
F1000Res ; 11: 1323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37125019

RESUMO

A network of cellular timers ensures the maintenance of homeostasis by temporal modulation of physiological processes across the day. These so-called circadian clocks are synchronized to geophysical time by external time cues (or zeitgebers). In modern societies, natural environmental cycles are disrupted by artificial lighting, around-the-clock availability of food or shiftwork. Such contradictory zeitgeber input promotes chronodisruption, i.e., the perturbation of internal circadian rhythms, resulting in adverse health outcomes. While this phenomenon is well described, it is still poorly understood at which level of organization perturbed rhythms impact on health and wellbeing. In this review, we discuss different levels of chronodisruption and what is known about their health effects. We summarize the results of disrupted phase coherence between external and internal time vs. misalignment of tissue clocks amongst each other, i.e., internal desynchrony. Last, phase incoherence can also occur at the tissue level itself. Here, alterations in phase coordination can emerge between cellular clocks of the same tissue or between different clock genes within the single cell. A better understanding of the mechanisms of circadian misalignment and its effects on physiology will help to find effective tools to prevent or treat disorders arising from modern-day chronodisruptive environments.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Sinais (Psicologia)
6.
Endocrinology ; 162(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33453099

RESUMO

The term energy metabolism comprises the entirety of chemical processes associated with uptake, conversion, storage, and breakdown of nutrients. All these must be tightly regulated in time and space to ensure metabolic homeostasis in an environment characterized by cycles such as the succession of day and night. Most organisms evolved endogenous circadian clocks to achieve this goal. In mammals, a ubiquitous network of cellular clocks is coordinated by a pacemaker residing in the hypothalamic suprachiasmatic nucleus. Adipocytes harbor their own circadian clocks, and large aspects of adipose physiology are regulated in a circadian manner through transcriptional regulation of clock-controlled genes. White adipose tissue (WAT) stores energy in the form of triglycerides at times of high energy levels that then serve as fuel in times of need. It also functions as an endocrine organ, releasing factors in a circadian manner to regulate food intake and energy turnover in other tissues. Brown adipose tissue (BAT) produces heat through nonshivering thermogenesis, a process also controlled by the circadian clock. We here review how WAT and BAT contribute to the circadian regulation of energy metabolism. We describe how adipose rhythms are regulated by the interplay of systemic signals and local clocks and summarize how adipose-originating circadian factors feed-back on metabolic homeostasis. The role of adipose tissue in the circadian control of metabolism becomes increasingly clear as circadian disruption leads to alterations in adipose tissue regulation, promoting obesity and its sequelae. Stabilizing adipose tissue rhythms, in turn, may help to combat disrupted energy homeostasis and obesity.


Assuntos
Tecido Adiposo/fisiologia , Ritmo Circadiano/fisiologia , Metabolismo Energético/fisiologia , Adipocinas/fisiologia , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Animais , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Citocinas/fisiologia , Homeostase/genética , Homeostase/fisiologia , Humanos , Termogênese/fisiologia
7.
Nat Commun ; 11(1): 3593, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681096

RESUMO

During pregnancy, maternal endocrine signals drive fetal development and program the offspring's physiology. A disruption of maternal glucocorticoid (GC) homeostasis increases the child's risk of developing psychiatric disorders later in life. We here show in mice, that the time of day of antenatal GC exposure predicts the behavioral phenotype of the adult offspring. Offspring of mothers receiving GCs out-of-phase compared to their endogenous circadian GC rhythm show elevated anxiety, impaired stress coping, and dysfunctional stress-axis regulation. The fetal circadian clock determines the vulnerability of the stress axis to GC treatment by controlling GC receptor (GR) availability in the hypothalamus. Similarly, a retrospective observational study indicates poorer stress compensatory capacity in 5-year old preterm infants whose mothers received antenatal GCs towards the evening. Our findings offer insights into the circadian physiology of feto-maternal crosstalk and assign a role to the fetal clock as a temporal gatekeeper of GC sensitivity.


Assuntos
Relógios Circadianos/efeitos dos fármacos , Glucocorticoides/efeitos adversos , Exposição Materna/efeitos adversos , Transtornos Mentais/etiologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Ansiedade , Comportamento/efeitos dos fármacos , Feminino , Glucocorticoides/administração & dosagem , Humanos , Recém-Nascido Prematuro/psicologia , Masculino , Transtornos Mentais/metabolismo , Transtornos Mentais/fisiopatologia , Transtornos Mentais/psicologia , Gravidez , Complicações na Gravidez/tratamento farmacológico , Cuidado Pré-Natal , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
9.
Sci Rep ; 9(1): 20114, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882641

RESUMO

Circadian clocks regulate physiological functions, including energy metabolism, along the 24-hour day cycle. The mammalian clock system is organized in a hierarchical manner with a coordinating pacemaker residing in the hypothalamic suprachiasmatic nucleus (SCN). The SCN clock is reset primarily by the external light-dark cycle while other zeitgebers such as the timing of food intake are potent synchronizers of many peripheral tissue clocks. Under conflicting zeitgeber conditions, e.g. during shift work, phase synchrony across the clock network is disrupted promoting the development of metabolic disorders. We established a zeitgeber desynchrony (ZD) paradigm to quantify the differential contributions of the two main zeitgebers, light and food, to the resetting of specific tissue clocks and the effect on metabolic homeostasis in mice. Under 28-hour light-dark and 24-hour feeding-fasting conditions SCN and peripheral clock, as well as activity and hormonal rhythms showed specific periodicities aligning in-between those of the two zeitgebers. During ZD, metabolic homeostasis was cyclic with mice gaining weight under synchronous and losing weight under conflicting zeitgeber conditions. In summary, our study establishes an experimental paradigm to compare zeitgeber input in vivo and study the physiological consequences of chronodisruption.


Assuntos
Relógios Circadianos/fisiologia , Fotoperíodo , Fatores Etários , Animais , Comportamento Animal , Ritmo Circadiano , Comportamento Alimentar , Masculino , Camundongos
10.
Int J Mol Sci ; 20(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650649

RESUMO

24-hour rhythms in physiology and behaviour are organized by a body-wide network of endogenous circadian clocks. In mammals, a central pacemaker in the hypothalamic suprachiasmatic nucleus (SCN) integrates external light information to adapt cellular clocks in all tissues and organs to the external light-dark cycle. Together, central and peripheral clocks co-regulate physiological rhythms and functions. In this review, we outline the current knowledge about the routes of communication between the environment, the main pacemakers and the downstream clocks in the body, focusing on what we currently know and what we still need to understand about the communication mechanisms by which centrally and peripherally controlled timing signals coordinate physiological functions and behaviour. We highlight recent findings that shed new light on the internal organization and function of the SCN and neuroendocrine mechanisms mediating clock-to-clock coupling. These findings have implications for our understanding of circadian network entrainment and for potential manipulations of the circadian clock system in therapeutic settings.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Comunicação , Mamíferos/fisiologia , Animais , Humanos , Transdução de Sinais , Fatores de Tempo
11.
Free Radic Biol Med ; 119: 8-16, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29132973

RESUMO

The 24-h sleep-wake cycle is one of the most prominent outputs of the circadian clock system. At the same time, changes in sleep-wake behavior feedback on behavioral and physiological circadian rhythms, thus altering the coordination of the body's clock network. Sleep and circadian rhythm disruption have similar physiological endpoints including metabolic, cognitive, and immunologic impairments. This raises the question to which extent these phenomena are causally linked. In this review, we summarize different physiologic outcomes of sleep deprivation and mistimed sleep and discuss the experimental evidence for a mediating role of the circadian clock machinery in this context.


Assuntos
Encéfalo/fisiologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Cognição/fisiologia , Sono/fisiologia , Animais , Humanos
12.
Compr Physiol ; 7(2): 383-427, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28333377

RESUMO

The different types of adipose tissues fulfill a wide range of biological functions-from energy storage to hormone secretion and thermogenesis-many of which show pronounced variations over the course of the day. Such 24-h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional-translational feedback loops comprised of a set of clock genes/proteins. Tissue-specific clock-controlled transcriptional programs translate time-of-day information into physiologically relevant signals. In adipose tissues, clock gene control has been documented for adipocyte proliferation and differentiation, lipid metabolism as well as endocrine function and other adipose oscillations are under control of systemic signals tied to endocrine, neuronal, or behavioral rhythms. Circadian rhythm disruption, for example, by night shift work or through genetic alterations, is associated with changes in adipocyte metabolism and hormone secretion. At the same time, adipose metabolic state feeds back to central and peripheral clocks, adjusting behavioral and physiological rhythms. In this overview article, we summarize our current knowledge about the crosstalk between circadian clocks and energy metabolism with a focus on adipose physiology. © 2017 American Physiological Society. Compr Physiol 7:383-427, 2017.


Assuntos
Tecido Adiposo/fisiologia , Ritmo Circadiano/fisiologia , Adipócitos/citologia , Adipócitos/fisiologia , Adipogenia/fisiologia , Adipocinas/metabolismo , Tecido Adiposo/anatomia & histologia , Tecido Adiposo/citologia , Animais , Regulação da Temperatura Corporal/fisiologia , Diferenciação Celular/fisiologia , Transtornos Cronobiológicos/complicações , Transtornos Cronobiológicos/metabolismo , Relógios Circadianos/fisiologia , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...