Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 13: 419, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22916735

RESUMO

BACKGROUND: In recent years an increasing number of yeast infections in humans have been related to certain clinical isolates of Saccharomyces cerevisiae. Some clinical strains showed in vivo and in vitro virulence traits and were able to cause death in mice whereas other clinical strains were avirulent. RESULTS: In this work, we studied the transcriptional profiles of two S. cerevisiae clinical strains showing virulent traits and two control non-virulent strains during a blood incubation model and detected a specific transcriptional response of clinical strains. This response involves an mRNA levels increase of amino acid biosynthesis genes and especially oxidative stress related genes. We observed that the clinical strains were more resistant to reactive oxygen species in vitro. In addition, blood survival of clinical isolates was high, reaching similar levels to pathogenic Candida albicans strain. Furthermore, a virulent strain mutant in the transcription factor Yap1p, unable to grow in oxidative stress conditions, presented decreased survival levels in human blood compared with the wild type or YAP1 reconstituted strain. CONCLUSIONS: Our data suggest that this enhanced oxidative stress response in virulent clinical isolates, presumably induced in response to oxidative burst from host defense cells, is important to increase survival in human blood and can help to infect and even produce death in mice models.


Assuntos
Sangue/microbiologia , Estresse Oxidativo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/patogenicidade , Transcriptoma , Aminoácidos/biossíntese , Regulação Fúngica da Expressão Gênica , Humanos , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Virulência
2.
Mol Immunol ; 48(15-16): 2135-43, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21820180

RESUMO

Candida albicans is an opportunistic human-pathogenic fungus, which can cause superficial but also life-threatening invasive infections. The pH-regulated antigen 1 (Pra1) of C. albicans is a surface-associated and secreted protein highly expressed in the hyphal form. Pra1 can bind to complement receptor 3 (CD11b/CD18) and can mediate adhesion to and migration of human phagocytes. Here, we investigated the role of Pra1 in the activation of human neutrophils. A C. albicans mutant strain lacking Pra1 (pra1Δ) supported neutrophil migration to a lower extent than did the parental wild-type strain. A Pra1-overexpressing C. albicans strain enhanced neutrophil migration and adherence. While inactivated hyphae of the Pra1-overexpressing mutant with surface-associated Pra1 enhanced the production and release of reactive oxygen species, myeloperoxidase, lactoferrin, and interleukin 8 by neutrophils, such responses were reduced when stimulated with inactivated hyphae of the pra1Δ strain. However, Pra1-overexpressing living hyphae, which secrete large amounts of Pra1, also caused a reduced neutrophil activation, indicating that the release of extracellular Pra1 can inhibit the activation of these innate immune cells. Similarly, soluble recombinant Pra1 inhibited the neutrophil responses elicited by cell-wall bound Pra1. Finally, fungal cells lacking Pra1 were more efficiently killed by neutrophils. In conclusion, surface-exposed Pra1 plays a role in the recognition of C. albicans, especially hyphal cells, by human neutrophils and enhances neutrophil antimicrobial responses. However, the fungus can counteract some of these defense mechanisms by releasing soluble Pra1.


Assuntos
Proteínas Fúngicas/imunologia , Micoses/imunologia , Neutrófilos/imunologia , Candida albicans/imunologia , Adesão Celular/imunologia , Quimiotaxia de Leucócito/imunologia , Humanos , Hifas/imunologia , Micoses/metabolismo , Neutrófilos/metabolismo
3.
PLoS One ; 6(4): e18394, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21512583

RESUMO

The extension of germ tubes into elongated hyphae by Candida albicans is essential for damage of host cells. The C. albicans-specific gene EED1 plays a crucial role in this extension and maintenance of filamentous growth. eed1Δ cells failed to extend germ tubes into long filaments and switched back to yeast growth after 3 h of incubation during growth on plastic surfaces. Expression of EED1 is regulated by the transcription factor Efg1 and ectopic overexpression of EED1 restored filamentation in efg1Δ. Transcriptional profiling of eed1Δ during infection of oral tissue revealed down-regulation of hyphal associated genes including UME6, encoding another key transcriptional factor. Ectopic overexpression of EED1 or UME6 rescued filamentation and damage potential in eed1Δ. Transcriptional profiling during overexpression of UME6 identified subsets of genes regulated by Eed1 or Ume6. These data suggest that Eed1 and Ume6 act in a pathway regulating maintenance of hyphal growth thereby repressing hyphal-to-yeast transition and permitting dissemination of C. albicans within epithelial tissues.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Candida albicans/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Hifas/genética
4.
Eukaryot Cell ; 10(1): 98-109, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21097664

RESUMO

The cell wall of the human-pathogenic fungus Candida albicans is a robust but also dynamic structure which mediates adaptation to changing environmental conditions during infection. Sap9 and Sap10 are cell surface-associated proteases which function in C. albicans cell wall integrity and interaction with human epithelial cells and neutrophils. In this study, we have analyzed the enzymatic properties of Sap9 and Sap10 and investigated whether these proteases cleave proteins on the fungal cell surface. We show that Sap9 and Sap10, in contrast to other aspartic proteases, exhibit a near-neutral pH optimum of proteolytic activity and prefer the processing of peptides containing basic or dibasic residues. However, both proteases also cleaved at nonbasic sites, and not all tested peptides with dibasic residues were processed. By digesting isolated cell walls with Sap9 or Sap10, we identified the covalently linked cell wall proteins (CWPs) Cht2, Ywp1, Als2, Rhd3, Rbt5, Ecm33, and Pga4 as in vitro protease substrates. Proteolytic cleavage of the chitinase Cht2 and the glucan-cross-linking protein Pir1 by Sap9 was verified using hemagglutinin (HA) epitope-tagged versions of both proteins. Deletion of the SAP9 and SAP10 genes resulted in a reduction of cell-associated chitinase activity similar to that upon deletion of CHT2, suggesting a direct influence of Sap9 and Sap10 on Cht2 function. In contrast, cell surface changes elicited by SAP9 and SAP10 deletion had no major impact on the phagocytosis and killing of C. albicans by human macrophages. We propose that Sap9 and Sap10 influence distinct cell wall functions by proteolytic cleavage of covalently linked cell wall proteins.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Candida albicans/enzimologia , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Sequência de Aminoácidos , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/genética , Candida albicans/patogenicidade , Quitinases/química , Quitinases/metabolismo , Simulação por Computador , Ensaios Enzimáticos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Concentração de Íons de Hidrogênio , Macrófagos/microbiologia , Macrófagos/fisiologia , Modelos Moleculares , Mutação , Pepstatinas/farmacologia , Fagocitose , Proteoma/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Células Tumorais Cultivadas
5.
Curr Opin Microbiol ; 13(4): 392-400, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20627672

RESUMO

Pathogenic yeasts, either from the environment or the normal flora, have to face phagocytic cells that constitute the first line of defence during infection. In order to evade or counteract attack by phagocytes, pathogenic yeasts have acquired a repertoire of strategies to survive, colonize and infect the host. In this review we focus on the interaction of yeasts, such as Candida, Histoplasma or Cryptococcus species, with macrophages or neutrophils. We discuss strategies used by these fungi to prevent phagocytosis or to counteract phagocytic activities. We go on to describe the strategies that permit intracellular survival within phagocytes and that may eventually lead to damage of and escape from the phagocyte.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune/imunologia , Micoses/imunologia , Fagócitos/imunologia , Leveduras/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Micoses/microbiologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagocitose , Leveduras/patogenicidade
6.
Mol Microbiol ; 76(1): 25-47, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20199593

RESUMO

Pigments contribute to the pathogenicity of many fungi, mainly by protecting fungal cells from host defence activities. Here, we have dissected the biosynthetic pathway of a tryptophan-derived pigment of the human pathogen Candida glabrata, identified key genes involved in pigment production and have begun to elucidate the possible biological function of the pigment. Using transcriptional analyses and a transposon insertion library, we have identified genes associated with pigment production. Targeted deletion mutants revealed that the pigment is a by-product of the Ehrlich pathway of tryptophan degradation: a mutant lacking a tryptophan-upregulated aromatic aminotransferase (Aro8) displayed significantly reduced pigmentation and a recombinantly expressed version of this protein was sufficient for pigment production in vitro. Pigment production is tightly regulated as the synthesis is affected by the presence of alternative nitrogen sources, carbon sources, cyclic AMP and oxygen. Growth of C. glabrata on pigment inducing medium leads to an increased resistance to hydrogen peroxide, an effect which was not observed with a mutant defective in pigmentation. Furthermore, pigmented yeast cells had a higher survival rate when exposed to human neutrophils and caused increased damage in a monolayer model of human epithelia, indicating a possible role of pigmentation during interactions with host cells.


Assuntos
Vias Biossintéticas/genética , Candida glabrata/genética , Candida glabrata/metabolismo , Pigmentos Biológicos/biossíntese , Triptofano/metabolismo , Candida glabrata/imunologia , Candida glabrata/patogenicidade , Carbono/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Elementos de DNA Transponíveis , Células Epiteliais/microbiologia , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Humanos , Peróxido de Hidrogênio/metabolismo , Mutagênese Insercional , Neutrófilos/imunologia , Neutrófilos/microbiologia , Nitrogênio/metabolismo , Oxigênio/metabolismo
7.
Infect Immun ; 77(12): 5216-24, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19805528

RESUMO

Human polymorphonuclear neutrophils (PMNs) play a major role in the immune defense against invasive Candida albicans infection. This fungal pathogen produces a set of aspartic proteases that directly contributes to virulence properties such as adhesion, tissue invasion, and immune evasion. We show here that, in contrast to other secreted proteases, the cell surface-associated isoform Sap9 has a major impact on the recognition of C. albicans by PMNs. SAP9 is required for the induction of PMN chemotaxis toward C. albicans filaments, an essential prerequisite of effective PMN activation. Furthermore, deletion of SAP9 leads to a mitigated release of reactive oxygen intermediates (ROI) in human PMNs and decreases C. albicans-induced apoptosis triggered by ROI formation. In confrontation assays, killing of a SAP9 deletion mutant is reduced in comparison to wild-type C. albicans. These data clearly implicate Sap9 protease activity in the initiation of protective innate immunity and suggest novel molecular mechanisms in C. albicans-host interaction leading to neutrophil activation.


Assuntos
Ácido Aspártico Endopeptidases/imunologia , Candida albicans/imunologia , Proteínas Fúngicas/imunologia , Fatores Imunológicos/farmacologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Ácido Aspártico Endopeptidases/genética , Candida albicans/genética , Ensaios de Migração de Leucócitos , Proteínas Fúngicas/genética , Deleção de Genes , Humanos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...