Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 620(7972): 61-66, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468630

RESUMO

White dwarfs, the extremely dense remnants left behind by most stars after their death, are characterized by a mass comparable to that of the Sun compressed into the size of an Earth-like planet. In the resulting strong gravity, heavy elements sink towards the centre and the upper layer of the atmosphere contains only the lightest element present, usually hydrogen or helium1,2. Several mechanisms compete with gravitational settling to change a white dwarf's surface composition as it cools3, and the fraction of white dwarfs with helium atmospheres is known to increase by a factor of about 2.5 below a temperature of about 30,000 kelvin4-8; therefore, some white dwarfs that appear to have hydrogen-dominated atmospheres above 30,000 kelvin are bound to transition to be helium-dominated as they cool below it. Here we report observations of ZTF J203349.8+322901.1, a transitioning white dwarf with two faces: one side of its atmosphere is dominated by hydrogen and the other one by helium. This peculiar nature is probably caused by the presence of a small magnetic field, which creates an inhomogeneity in temperature, pressure or mixing strength over the surface9-11. ZTF J203349.8+322901.1 might be the most extreme member of a class of magnetic, transitioning white dwarfs-together with GD 323 (ref. 12), a white dwarf that shows similar but much more subtle variations. This class of white dwarfs could help shed light on the physical mechanisms behind the spectral evolution of white dwarfs.

2.
Nature ; 619(7968): 41-45, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344593

RESUMO

The centre of the Milky Way Galaxy hosts a black hole with a solar mass of about 4 million (Sagittarius A* (Sgr A)) that is very quiescent at present with a luminosity many orders of magnitude below those of active galactic nuclei1. Reflection of X-rays from Sgr A* by dense gas in the Galactic Centre region offers a means to study its past flaring activity on timescales of hundreds and thousands of years2. The shape of the X-ray continuum and the strong fluorescent iron line observed from giant molecular clouds in the vicinity of Sgr A* are consistent with the reflection scenario3-5. If this interpretation is correct, the reflected continuum emission should be polarized6. Here we report observations of polarized X-ray emission in the direction of the molecular clouds in the Galactic Centre using the Imaging X-ray Polarimetry Explorer. We measure a polarization degree of 31% ± 11%, and a polarization angle of -48° ± 11°. The polarization angle is consistent with Sgr A* being the primary source of the emission, and the polarization degree implies that some 200 years ago, the X-ray luminosity of Sgr A* was briefly comparable to that of a Seyfert galaxy.

3.
Nature ; 612(7941): 658-660, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36543953

RESUMO

Pulsar wind nebulae are formed when outflows of relativistic electrons and positrons hit the surrounding supernova remnant or interstellar medium at a shock front. The Vela pulsar wind nebula is powered by a young pulsar (B0833-45, aged 11,000 years)1 and located inside an extended structure called Vela X, which is itself inside the supernova remnant2. Previous X-ray observations revealed two prominent arcs that are bisected by a jet and counter jet3,4. Radio maps have shown high linear polarization of 60% in the outer regions of the nebula5. Here we report an X-ray observation of the inner part of the nebula, where polarization can exceed 60% at the leading edge-approaching the theoretical limit of what can be produced by synchrotron emission. We infer that, in contrast with the case of the supernova remnant, the electrons in the pulsar wind nebula are accelerated with little or no turbulence in a highly uniform magnetic field.

4.
Science ; 378(6620): 646-650, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36356124

RESUMO

Magnetars are neutron stars with ultrastrong magnetic fields, which can be observed in x-rays. Polarization measurements could provide information on their magnetic fields and surface properties. We observed polarized x-rays from the magnetar 4U 0142+61 using the Imaging X-ray Polarimetry Explorer and found a linear polarization degree of 13.5 ± 0.8% averaged over the 2- to 8-kilo-electron volt band. The polarization changes with energy: The degree is 15.0 ± 1.0% at 2 to 4 kilo-electron volts, drops below the instrumental sensitivity ~4 to 5 kilo-electron volts, and rises to 35.2 ± 7.1% at 5.5 to 8 kilo-electron volts. The polarization angle also changes by 90° at ~4 to 5 kilo-electron volts. These results are consistent with a model in which thermal radiation from the magnetar surface is reprocessed by scattering off charged particles in the magnetosphere.

6.
Nature ; 595(7865): 39-42, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194021

RESUMO

White dwarfs represent the last stage of evolution of stars with mass less than about eight times that of the Sun and, like other stars, are often found in binaries1,2. If the orbital period of the binary is short enough, energy losses from gravitational-wave radiation can shrink the orbit until the two white dwarfs come into contact and merge3. Depending on the component masses, the merger can lead to a supernova of type Ia or result in a massive white dwarf4. In the latter case, the white dwarf remnant is expected to be highly magnetized5,6 because of the strong magnetic dynamo that should arise during the merger, and be rapidly spinning from the conservation of the orbital angular momentum7. Here we report observations of a white dwarf, ZTF J190132.9+145808.7, that exhibits these properties, but to an extreme: a rotation period of 6.94 minutes, a magnetic field ranging between 600 megagauss and 900 megagauss over its surface, and a stellar radius of [Formula: see text] kilometres, only slightly larger than the radius of the Moon. Such a small radius implies that the star's mass is close to the maximum white dwarf mass, or Chandrasekhar mass. ZTF J190132.9+145808.7 is likely to be cooling through the Urca processes (neutrino emission from electron capture on sodium) because of the high densities reached in its core.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(3 Pt 2): 036407, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19905230

RESUMO

A fully relativistic treatment of Bernstein waves in an electron-positron pair plasma has remained too formidable a task, owing to the very complex nature of the problem. In this paper, we perform contour integration of the dielectric-response function and numerically compute the dispersion curves for a uniform magnetized relativistic electron-positron pair plasma. The behavior of the dispersion solution for several cases with different plasma temperatures is highlighted. In particular, we find two wave modes that exist only for large wavelengths and frequencies similar to the cyclotron frequency in a moderately relativistic pair plasma. The results presented here have important implications for the study of those objects where a hot magnetized electron-positron plasma plays a fundamental role in generating the observed radiation.


Assuntos
Gases/química , Temperatura Alta , Modelos Químicos , Teoria Quântica , Simulação por Computador
8.
Phys Rev Lett ; 88(12): 121302, 2002 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-11909443

RESUMO

If the potential of a scalar field phi which currently provides the "dark energy" of the Universe has a minimum at phi = -M(0)(4)<0, then quantum-mechanical fluctuations could nucleate a bubble of phi at a negative value of the potential. This bubble would then expand at the speed of light. Given that no such bubble enveloped us in the past, we find that any minimum in V(phi) must be separated from the current phi value by more than min[1.5M(0),0.21M(Pl)], where M(Pl) is the Planck mass. We also show that vacuum decay renders a cyclic or ekpyrotic universe with M(0)(4) > or approximately 10(-10)M(4)(Pl) untenable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...