Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(13): 130401, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33861103

RESUMO

Disorder-free localization has been recently introduced as a mechanism for ergodicity breaking in low-dimensional homogeneous lattice gauge theories caused by local constraints imposed by gauge invariance. We show that also genuinely interacting systems in two spatial dimensions can become nonergodic as a consequence of this mechanism. This result is all the more surprising since the conventional many-body localization is conjectured to be unstable in two dimensions; hence the gauge invariance represents an alternative robust localization mechanism surviving in higher dimensions in the presence of interactions. Specifically, we demonstrate nonergodic behavior in the quantum link model by obtaining a bound on the localization-delocalization transition through a classical correlated percolation problem implying a fragmentation of Hilbert space on the nonergodic side of the transition. We study the quantum dynamics in this system by introducing the method of "variational classical networks," an efficient and perturbatively controlled representation of the wave function in terms of a network of classical spins akin to artificial neural networks. We identify a distinguishing dynamical signature by studying the propagation of line defects, yielding different light cone structures in the localized and ergodic phases, respectively. The methods we introduce in this work can be applied to any lattice gauge theory with finite-dimensional local Hilbert spaces irrespective of spatial dimensionality.

2.
Phys Rev Lett ; 119(8): 080501, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28952773

RESUMO

The theory of phase transitions represents a central concept for the characterization of equilibrium matter. In this work we study experimentally an extension of this theory to the nonequilibrium dynamical regime termed dynamical quantum phase transitions (DQPTs). We investigate and measure DQPTs in a string of ions simulating interacting transverse-field Ising models. During the nonequilibrium dynamics induced by a quantum quench we show for strings of up to 10 ions the direct detection of DQPTs by revealing nonanalytic behavior in time. Moreover, we provide a link between DQPTs and the dynamics of other quantities such as the magnetization, and we establish a connection between DQPTs and entanglement production.

3.
Phys Rev Lett ; 113(20): 205701, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25432049

RESUMO

In this Letter it is shown that dynamical quantum phase transitions in Loschmidt echos control the nonequilibrium dynamics of the order parameter after particular quantum quenches in systems with broken-symmetry phases. A direct connection between Loschmidt echos and the order parameter dynamics is established which links nonequilibrium microscopic probabilities to the system's macroscopic dynamical properties. These concepts are illustrated numerically using exact diagonalization for quantum quenches in the XXZ chain with initial Néel states. An outlook is given on how to explore these predictions experimentally with ultracold gases in optical lattices.

4.
Phys Rev Lett ; 110(13): 135704, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581343

RESUMO

A phase transition indicates a sudden change in the properties of a large system. For temperature-driven phase transitions this is related to nonanalytic behavior of the free energy density at the critical temperature: The knowledge of the free energy density in one phase is insufficient to predict the properties of the other phase. In this Letter we show that a close analogue of this behavior can occur in the real time evolution of quantum systems, namely nonanalytic behavior at a critical time. We denote such behavior a dynamical phase transition and explore its properties in the transverse-field Ising model. Specifically, we show that the equilibrium quantum phase transition and the dynamical phase transition in this model are intimately related.

5.
Phys Rev Lett ; 108(19): 190601, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-23003018

RESUMO

We show that work distributions and nonequilibrium work fluctuation theorems can be measured in optical spectra for a wide class of quantum systems. We consider systems where the absorption or emission of a photon corresponds to the sudden switch on or off of a local perturbation. For the particular case of a weak local perturbation, the Crooks relation establishes a universal relation in absorption as well as in emission spectra. Because of a direct relation between the spectra and work distribution functions this is equivalent to universal relations in work distributions for weak local quenches. As two concrete examples we treat the x-ray edge problem and the Kondo exciton.

6.
J Phys Condens Matter ; 22(34): 345604, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21403260

RESUMO

In this work we investigate the quench dynamics in the Kondo model on the Toulouse line in the presence of a local magnetic field. It is shown that this setup can be realized by either applying the local magnetic field directly or by preparing the system in a macroscopically spin-polarized initial state. In the latter case, the magnetic field results from a subtlety in applying the bosonization technique where terms that are usually referred to as finite-size corrections become important in the present non-equilibrium setting. The transient dynamics are studied by analyzing exact analytical results for the local spin dynamics. The timescale for the relaxation of the local dynamical quantities turns out to be exclusively determined by the Kondo scale. In the transient regime, one observes damped oscillations in the local correlation functions with a frequency set by the magnetic field.

7.
J Phys Condens Matter ; 22(27): 275604, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-21399263

RESUMO

We obtain exact results for the transport through a resonant level model (noninteracting Anderson impurity model) for rectangular voltage bias as a function of time. We study both the transient behavior after switching on the tunneling at time t = 0 and the ensuing steady state behavior. Explicit expressions are obtained for the ac current in the linear response regime and beyond for large voltage bias. Among other effects, we observe current ringing and PAT (photon-assisted tunneling) oscillations.


Assuntos
Nanotecnologia/métodos , Algoritmos , Modelos Estatísticos , Oscilometria/métodos , Fótons , Física/métodos , Pontos Quânticos , Teoria Quântica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...