Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 18(3): 1600-1607, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29378412

RESUMO

PEDOT: PSS, a transparent electrically conductive polymer, finds widespread use in electronic devices. While empirical efforts have increased conductivity, a detailed understanding of the coupled electronic and morphological landscapes in PEDOT:PSS has lagged due to substantial structural heterogeneity on multiple length-scales. We use an optical microresonator-based absorption spectrometer to perform single-particle measurements, providing a bottom-up examination of electronic structure and morphology ranging from single PEDOT:PSS polymers to nascent films. Using single-particle spectroscopy with complementary theoretical calculations and ultrafast spectroscopy, we demonstrate that PEDOT:PSS displays bulk-like optical response even in single polymers. We find highly ordered PEDOT assemblies with long-range ordering mediated by the insulating PSS matrix and reveal a preferential surface orientation of PEDOT nanocrystallites absent in bulk films with implications for interfacial electronic communication. Our single-particle perspective provides a unique window into the microscopic structure and electronic properties of PEDOT:PSS.

2.
Angew Chem Int Ed Engl ; 56(49): 15584-15588, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29063723

RESUMO

Intrinsically disordered proteins, such as tau protein, adopt a variety of conformations in solution, complicating solution-phase structural studies. We employed an anti-Brownian electrokinetic (ABEL) trap to prolong measurements of single tau proteins in solution. Once trapped, we recorded the fluorescence anisotropy to investigate the diversity of conformations sampled by the single molecules. A distribution of anisotropy values obtained from trapped tau protein is conspicuously bimodal while those obtained by trapping a globular protein or individual fluorophores are not. Time-resolved fluorescence anisotropy measurements were used to provide an explanation of the bimodal distribution as originating from a shift in the compaction of the two different families of conformations.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas tau/química , Polarização de Fluorescência , Conformação Proteica , Soluções
3.
Nano Lett ; 17(11): 6927-6934, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28968499

RESUMO

Hybrid photonic-plasmonic systems have tremendous potential as versatile platforms for the study and control of nanoscale light-matter interactions since their respective components have either high-quality factors or low mode volumes. Individual metallic nanoparticles deposited on optical microresonators provide an excellent example where ultrahigh-quality optical whispering-gallery modes can be combined with nanoscopic plasmonic mode volumes to maximize the system's photonic performance. Such optimization, however, is difficult in practice because of the inability to easily measure and tune critical system parameters. In this Letter, we present a general and practical method to determine the coupling strength and tailor the degree of hybridization in composite optical microresonator-plasmonic nanoparticle systems based on experimentally measured absorption spectra. Specifically, we use thermal annealing to control the detuning between a metal nanoparticle's localized surface plasmon resonance and the whispering-gallery modes of an optical microresonator cavity. We demonstrate the ability to sculpt Fano resonance lineshapes in the absorption spectrum and infer system parameters critical to elucidating the underlying photonic-plasmonic hybridization. We show that including decoherence processes is necessary to capture the evolution of the lineshapes. As a result, thermal annealing allows us to directly tune the degree of hybridization and various hybrid mode quantities such as the quality factor and mode volume and ultimately maximize the Purcell factor to be 104.

4.
Adv Mater ; 29(30)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28627118

RESUMO

Optical microresonators confine light to a particular microscale trajectory, are exquisitely sensitive to their microenvironment, and offer convenient readout of their optical properties. Taken together, this is an immensely attractive combination that makes optical microresonators highly effective as sensors and transducers. Meanwhile, advances in material science, fabrication techniques, and photonic sensing strategies endow optical microresonators with new functionalities, unique transduction mechanisms, and in some cases, unparalleled sensitivities. In this progress report, the operating principles of these sensors are reviewed, and different methods of signal transduction are evaluated. Examples are shown of how choice of materials must be suited to the analyte, and how innovations in fabrication and sensing are coupled together in a mutually reinforcing cycle. A tremendously broad range of capabilities of microresonator sensors is described, from electric and magnetic field sensing to mechanical sensing, from single-molecule detection to imaging and spectroscopy, from operation at high vacuum to in live cells. Emerging sensing capabilities are highlighted and put into context in the field. Future directions are imagined, where the diverse capabilities laid out are combined and advances in scalability and integration are implemented, leading to the creation of a sensor unparalleled in sensitivity and information content.

5.
Adv Mater ; 28(15): 2945-50, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26853536

RESUMO

Whispering-gallery-mode microresonators enable materials for single-molecule label-free detection and imaging because of their high sensitivity to their micro-environment. However, fabrication and materials challenges prevent scalability and limit functionality. All-glass on-chip microresonators significantly reduce these difficulties. Construction of all-glass toroidal microresonators with high quality factor and low mode volume is reported and these are used as platforms for label-free single-particle imaging.


Assuntos
Vidro , Microtecnologia/instrumentação , Desenho de Equipamento , Temperatura
6.
J Phys Chem Lett ; 5(11): 1917-23, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26273873

RESUMO

A powerful new paradigm for single-particle microscopy on nonluminescent targets is reported using ultrahigh-quality factor optical microresonators as the critical detecting element. The approach is photothermal in nature as the microresonators are used to detect heat dissipated from individual photoexcited nano-objects. The method potentially satisfies an outstanding need for single-particle microscopy on nonluminescent objects of increasingly smaller absorption cross section. Simultaneously, our approach couples the sensitivity of label-free detection using optical microresonators with a means of deriving chemical information on the target species, a significant benefit. As a demonstration, individual nonphotoluminescent multiwalled carbon nanotubes are spatially mapped, and the per-atom absorption cross section is determined. Finite-element simulations are employed to model the relevant thermal processes and elucidate the sensing mechanism. Finally, a direct pathway to the extension of this new technique to molecules is laid out, leading to a potent new method of performing measurements on individual molecules.

7.
J Phys Chem A ; 117(20): 4214-22, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23672622

RESUMO

The reactions of NO(y) species in the atmosphere with sea spray aerosol replace halogen anions with nitrate. These experiments show the effect of increasing the nitrate content of model sea spray aerosol particles on the morphology changes and the phase transitions driven by changes in relative humidity (RH). The components of the model particles include H2O, Na+, Mg2+, Cl-, NO3-, and SO4(2-). Tandem differential mobility analyzer (TDMA) measurements yield the water content and efflorescence relative humidity (ERH) of these particles, and probe molecule spectroscopic measurements reveal subsequent phase transitions and partially characterize the salt composition on the surface of dry particles. The results show three effects of increasing the nitrate composition: decreasing the EFH (46 to 29%), production of a metastable aqueous layer on the surface of effloresced particles, and decreasing the sulfate content near the surface of dry particles. For the mixtures studied here, the initial crystallization event forms a core of NaCl. For particles that contain a substantial metastable aqueous layer following efflorescence, probe molecule spectroscopy shows a second crystallization at a lower RH. This subsequent phase transition is likely the formation of Na2SO4. Homogeneous nucleation theory (HNT) using a semiempirical formulation predicts the ERH of all mixtures within 2.0% RH, with a mean absolute deviation of 1.0%. The calculations suggest that structures associated with highly concentrated or supersaturated magnesium ions strongly affect the interfacial tension between the NaCl crystal nucleus and the droplet from which it forms.


Assuntos
Aerossóis/química , Modelos Químicos , Óxidos de Nitrogênio/química , Termodinâmica , Umidade , Cloreto de Sódio/química , Sulfatos/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...