Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(20): 8899-8908, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38710098

RESUMO

Mixing-induced reactions play a key role in a large range of biogeochemical and contaminant transport processes in the subsurface. Fluid flow through porous media was recently shown to exhibit chaotic mixing dynamics at the pore scale, enhancing microscale concentration gradients and controlling mixing rates. While this phenomenon is likely ubiquitous in environmental systems, it is not known how it affects chemical reactions. Here, we use refractive index matching and laser-induced fluorescence imaging of a bimolecular redox reaction to investigate the consequence of pore scale chaotic mixing on the reaction rates. The overestimation of measured reaction rates by the classical macrodispersion model highlights the persistence of incomplete mixing on the pore scale. We show that the reaction product formation is controlled by microscale chaotic mixing, which induces an exponential increase of the mixing interface and of the reaction rates. We derive a reactive transport model that captures experimental results and predicts that chaotic mixing has a first order control on reaction rates across a large range of time scales and Péclet and Damköhler numbers. These findings provide a new framework for understanding, assessing, and predicting mixing-induced reactions and their role on the fate and mobility of environmental compounds in natural porous media.

2.
Sports Med ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555307

RESUMO

BACKGROUND: Ultra-trail running races pose appreciable physiological challenges, particularly for glucose metabolism. Previous studies that yielded divergent results only measured glycaemia at isolated times. OBJECTIVES: We aimed to explore the impact of an ultra-endurance race on continuously measured glycaemia and to understand potential physiological mechanisms, as well as the consequences for performance and behavioural alertness. METHODS: Fifty-five athletes (78% men, 43.7 ± 9.6 years) ran a 156-km ultra-trail race (six 26-km laps, total elevation 6000 m). Participants wore a masked continuous glucose monitoring sensor from the day before the race until 10 days post-race. Blood was taken at rest, during refuelling stops after each lap, and after 24-h recovery. Running intensity (% heart rate reserve), performance (lap times), psychological stress, and behavioural alertness were explored. Linear mixed models and logistic regressions were carried out. RESULTS: No higher risk of hypo- or hyperglycaemia was observed during the exercise phases of the race (i.e. excluding stops for scientific measurements and refuelling) compared with resting values. Laps comprising a greater proportion of time spent at maximal aerobic intensity were nevertheless associated with more time > 180 mg/dL (P = 0.021). A major risk of hyperglycaemia appeared during the 48-h post-race period compared with pre-race (P < 0.05), with 31.9% of the participants spending time with values > 180 mg/dL during recovery versus 5.5% during resting. Changes in circulating insulin, cortisol, and free fatty acids followed profiles comparable with those usually observed during traditional aerobic exercise. However, creatine phosphokinase, and to a lesser extent lactate dehydrogenase, increased exponentially during the race (P < 0.001) and remained high at 24-h post-race (P < 0.001; respectively 43.6 and 1.8 times higher vs. resting). Glycaemic metrics did not influence physical performance or behavioural alertness. CONCLUSION: Ultra-endurance athletes were exposed to hyperglycaemia during the 48-h post-race period, possibly linked to muscle damage and inflammation. Strategies to mitigate muscle damage or subsequent inflammation before or after ultra-trail races could limit recovery hyperglycaemia and hence its related adverse health consequences. TRIAL REGISTRATION NUMBER: NCT05538442 2022-09-21 retrospectively registered.

3.
Phys Rev Lett ; 130(26): 264001, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37450789

RESUMO

Chemical and biological reactions at fluid-solid interfaces are central to a broad range of porous material applications and research. Pore-scale solute transport limitations can reduce reaction rates, with marked consequences for a wide spectrum of natural and engineered processes. Recent advances show that chaotic mixing occurs spontaneously in porous media, but its impact on surface reactions is unknown. We show that pore-scale chaotic mixing significantly increases reaction efficiency compared to nonchaotic flows. We find that reaction rates are well described in terms of diffusive first-passage times of reactants to the solid interface subjected to a stochastic restart process resulting from Lagrangian chaos. Under chaotic mixing, the shear layer at no-slip interfaces sets the restart rate and leads to a characteristic scaling of reaction efficiency with Péclet number, in excellent agreement with numerical simulations. Reaction rates are insensitive to the flow topology as long as flow is chaotic, suggesting the relevance of this process to a broad range of porous materials.


Assuntos
Modelos Teóricos , Porosidade , Difusão , Soluções
4.
Data Brief ; 46: 108837, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36591382

RESUMO

This article presents field measurements that document the physical and chemical response of riverbeds to critical hydrological and sedimentary forcing in the Selune River (France). The river flows into the bay of Mont Saint-Michel and thus impacts numerous economic activities and the spawning of several key species such as Atlantic salmon and lamprey. To restore the hydro-sedimentary continuity of the river, two dams are currently being removed. Significant changes in the stream flow regime, stream-aquifer exchanges and sediment transport are expected, hence the monitoring campaign. A network autonomous sensor (water level, temperature, conductivity, oxygen and pressure differential) was installed on 18 October 2021 at various depths in the riverbed and the river for a one-year period. This was to continuously record variations in the main physico-chemical variables and relate them to surface processes. To assess the impact of dam removal on these variables, two measurement sites were chosen: one upstream of the dams where flow conditions remained stable, and another downstream of the dams where a large amount of fine sediment has been released. This original data can be used to determine the biogeochemical functioning of the hyporheic zone and its coupling with dynamical flow and sedimentary processes.

5.
Can J Diabetes ; 47(2): 124-132, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36411182

RESUMO

OBJECTIVES: Ever since the first research on barriers to physical activity (PA) highlighting fear of hypoglycemia as a major barrier, many studies have attempted to understand their demographic and behavioural determinants. However, no research has been conducted on whether these perceived barriers toward PA are based on real-life-experienced adverse glycemic effects of exercise. METHODS: Sixty-two adults and 53 children/adolescents living with type 1 diabetes, along with their parents, completed the Barriers to Physical Activity in Type 1 Diabetes-1 (BAPAD-1) questionnaire on barriers to PA. Continuous glucose-monitoring data were collected during 1 week of everyday life for 26 adults and 33 children/adolescents. Multiple linear regressions were used to explore links between BAPAD-1 scores and glycemic excursions experienced during and after everyday-life self-reported PA sessions, controlling for behavioural (accelerometry) and demographic confounders. RESULTS: In children/adolescents, the more time spent in hypoglycemia on nights after PA sessions, the more they reported hypoglycemic risk as a barrier (ß=+0.365, p=0.034). Conversely, in adults, the higher the proportion of PA sessions accompanied by a drop in blood glucose, the less hypoglycemia was a barrier (ß=-0.046, p=0.004). In parents, BAPAD-1 scores were unrelated to children/adolescents' everyday-life exercise-induced hypo/hyperglycemia. CONCLUSIONS: In children/adolescents, fear of hypoglycemia was predominant in those exposed to nocturnal hypoglycemia associated with PA sessions. In adults, fewer barriers may mean they accept a bigger drop in their glycemia during PA. This shows the importance of finding and promoting age-specific solutions to prevent exercise-induced hypoglycemia.


Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemia , Adolescente , Adulto , Humanos , Criança , Exercício Físico , Hipoglicemiantes/efeitos adversos , Hipoglicemia/prevenção & controle , Glicemia
6.
Environ Sci Technol ; 56(8): 4998-5008, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35353529

RESUMO

Spectral induced polarization (SIP) has the potential for monitoring reactive processes in the subsurface. While strong SIP responses have been measured in response to calcite precipitation, their origin and mechanism remain debated. Here we present a novel geo-electrical millifluidic setup designed to observe microscale reactive transport processes while performing SIP measurements. We induced calcite precipitation by injecting two reactive solutions into a porous medium, which led to highly localized precipitates at the mixing interface. Strikingly, the amplitude of the SIP response increased by 340% during the last 7% increase in precipitate volume. Furthermore, while the peak frequency in SIP response varied spatially over 1 order of magnitude, the crystal size range was similar along the front, contradicting assumptions in the classical grain polarization model. We argue that the SIP response of calcite precipitation in such mixing fronts is governed by Maxwell-Wagner polarization due to the establishment of a precipitate wall. Numerical simulations of the electric field suggested that spatial variation in peak frequency was related to the macroscopic shape of the front. These findings provide new insights into the SIP response of calcite precipitation and highlight the potential of geoelectrical millifluidics for understanding and modeling electrical signatures of reactive transport processes.


Assuntos
Carbonato de Cálcio , Eletricidade , Carbonato de Cálcio/química , Precipitação Química , Porosidade
7.
Diabetes Care ; 43(10): 2564-2573, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32732373

RESUMO

OBJECTIVE: In type 1 diabetes, autonomic dysfunction may occur early as a decrease in heart rate variability (HRV). In populations without diabetes, the positive effects of exercise training on HRV are well-documented. However, exercise in individuals with type 1 diabetes, particularly if strenuous and prolonged, can lead to sharp glycemic variations, which can negatively impact HRV. This study explores the impact of a 9-day cycling tour on HRV in this population, with a focus on exercise-induced glycemic excursions. RESEARCH DESIGN AND METHODS: Twenty amateur athletes with uncomplicated type 1 diabetes cycled 1,500 km. HRV and glycemic variability were measured by heart rate and continuous glucose monitoring. Linear mixed models were used to test the effects of exercise on HRV, with concomitant glycemic excursions and subject characteristics considered as covariates. RESULTS: Nighttime HRV tended to decrease with the daily distance traveled. The more time the subjects spent in hyperglycemia, the lower the parasympathetic tone was. This result is striking given that hyperglycemic excursions progressively increased throughout the 9 days of the tour, and to a greater degree on the days a longer distance was traveled, while time spent in hypoglycemia surprisingly decreased. This phenomenon occurred despite no changes in insulin administration and a decrease in carbohydrate intake from snacks. CONCLUSIONS: In sports enthusiasts with type 1 diabetes, multiday prolonged exercise at moderate-to-vigorous intensity worsened hyperglycemia, with hyperglycemia negatively associated with parasympathetic cardiac tone. Considering the putative deleterious consequences on cardiac risks, future work should focus on understanding and managing exercise-induced hyperglycemia.


Assuntos
Doenças do Sistema Nervoso Autônomo , Ciclismo/fisiologia , Diabetes Mellitus Tipo 1 , Frequência Cardíaca/fisiologia , Hiperglicemia/sangue , Adulto , Atletas , Doenças do Sistema Nervoso Autônomo/sangue , Doenças do Sistema Nervoso Autônomo/etiologia , Glicemia/análise , Glicemia/metabolismo , Automonitorização da Glicemia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/fisiopatologia , Angiopatias Diabéticas/sangue , Angiopatias Diabéticas/fisiopatologia , Exercício Físico/fisiologia , Feminino , Coração/fisiopatologia , Humanos , Hiperglicemia/etiologia , Hiperglicemia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Proc Natl Acad Sci U S A ; 117(24): 13359-13365, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32467164

RESUMO

Fluid flow in porous media drives the transport, mixing, and reaction of molecules, particles, and microorganisms across a wide spectrum of natural and industrial processes. Current macroscopic models that average pore-scale fluctuations into an effective dispersion coefficient have shown significant limitations in the prediction of many important chemical and biological processes. Yet, it is unclear how three-dimensional flow in porous structures govern the microscale chemical gradients controlling these processes. Here, we obtain high-resolution experimental images of microscale mixing patterns in three-dimensional porous media and uncover an unexpected and general mixing mechanism that strongly enhances concentration gradients at pore-scale. Our experiments reveal that systematic stretching and folding of fluid elements are produced in the pore space by grain contacts, through a mechanism that leads to efficient microscale chaotic mixing. These insights form the basis for a general kinematic model linking chaotic-mixing rates in the fluid phase to the generic structural properties of granular matter. The model successfully predicts the resulting enhancement of pore-scale chemical gradients, which appear to be orders of magnitude larger than predicted by dispersive approaches. These findings offer perspectives for predicting and controlling the vast diversity of reactive transport processes in natural and synthetic porous materials, beyond the current dispersion paradigm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...