Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(47): 52560-52570, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33180455

RESUMO

Covellite-phase CuS and carrollite-phase CuCo2S4 nano- and microstructures were synthesized from tetrachloridometallate-based ionic liquid precursors using a novel, facile, and highly controllable hot-injection synthesis strategy. The synthesis parameters including reaction time and temperature were first optimized to produce CuS with a well-controlled and unique morphology, providing the best electrocatalytic activity toward the oxygen evolution reaction (OER). In an extension to this approach, the electrocatalytic activity was further improved by incorporating Co into the CuS synthesis method to yield CuCo2S4 microflowers. Both routes provide high microflower yields of >80 wt %. The CuCo2S4 microflowers exhibit a superior performance for the OER in alkaline medium compared to CuS. This is demonstrated by a lower onset potential (∼1.45 V vs RHE @10 mA/cm2), better durability, and higher turnover frequencies compared to bare CuS flowers or commercial Pt/C and IrO2 electrodes. Likely, this effect is associated with the presence of Co3+ sites on which a better adsorption of reactive species formed during the OER (e.g., OH, O, OOH, etc.) can be achieved, thus reducing the OER charge-transfer resistance, as indicated by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy measurements.

2.
Nanomaterials (Basel) ; 10(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957490

RESUMO

Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different MPA:MUA ratios, making this study the first investigation into the effects of mixed ligand shells on InPZnS QDs. Moreover, this article also describes an optimized method for the correlation of the QD size vs. optical absorption of the QDs. Upon ligand exchange, the QDs can be dispersed in water. Longer ligands (MUA) provide more stable dispersions than short-chain ligands. Thicker ZnSe/ZnS shells provide a better photoluminescence quantum yield (PLQY) and higher emission stability upon ligand exchange. Both the ligand exchange and the optical properties are highly reproducible between different QD batches. Before dialysis, QDs with a ZnS shell thickness of ~4.9 monolayers (ML), stabilized with a mixed MPA:MUA (mixing ratio of 1:10), showed the highest PLQY, at ~45%. After dialysis, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with a mixed MPA:MUA and a ratio of 1:10 and 1:100, showed the highest PLQYs, of ~41%. The dispersions were stable up to 44 days at ambient conditions and in the dark. After 44 days, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with only MUA, showed the highest PLQY, of ~34%.

3.
J Chem Phys ; 148(19): 193818, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30307196

RESUMO

Hexagonal p-type semiconductor CuS nanoplates were synthesized via a hot injection method from bis(trimethylsilyl)sulfide and the ionic liquid precursor bis(N-dodecylpyridinium) tetrachloridocuprate(ii). The particles have a broad size distribution with diameters between 30 and 680 nm and well-developed crystal habits. The nanoplates were successfully incorporated into organic photovoltaic (OPV) cells as hole conduction materials. The power conversion efficiency of OPV cells fabricated with the nanoplates is 16% higher than that of a control device fabricated without the nanoplates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...