Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499759
2.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293063

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa infects cystic fibrosis (CF) patient airways and produces a virulence factor Cif that is associated with worse outcomes. Cif is an epoxide hydrolase that reduces cell-surface abundance of the cystic fibrosis transmembrane conductance regulator (CFTR) and sabotages pro-resolving signals. Its expression is regulated by a divergently transcribed TetR family transcriptional repressor. CifR represents the first reported epoxide-sensing bacterial transcriptional regulator, but neither its interaction with cognate operator sequences nor the mechanism of activation has been investigated. Using biochemical and structural approaches, we uncovered the molecular mechanisms controlling this complex virulence operon. We present here the first molecular structures of CifR alone and in complex with operator DNA, resolved in a single crystal lattice. Significant conformational changes between these two structures suggest how CifR regulates the expression of the virulence gene cif. Interactions between the N-terminal extension of CifR with the DNA minor groove of the operator play a significant role in the operator recognition of CifR. We also determined that cysteine residue Cys107 is critical for epoxide sensing and DNA release. These results offer new insights into the stereochemical regulation of an epoxide-based virulence circuit in a critically important clinical pathogen.

3.
Proc Natl Acad Sci U S A ; 120(31): e2307382120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487082

RESUMO

Recombination-promoting nuclease (Rpn) proteins are broadly distributed across bacterial phyla, yet their functions remain unclear. Here, we report that these proteins are toxin-antitoxin systems, comprised of genes-within-genes, that combat phage infection. We show the small, highly variable Rpn C-terminal domains (RpnS), which are translated separately from the full-length proteins (RpnL), directly block the activities of the toxic RpnL. The crystal structure of RpnAS revealed a dimerization interface encompassing α helix that can have four amino acid repeats whose number varies widely among strains of the same species. Consistent with strong selection for the variation, we document that plasmid-encoded RpnP2L protects Escherichia coli against certain phages. We propose that many more intragenic-encoded proteins that serve regulatory roles remain to be discovered in all organisms.


Assuntos
Antitoxinas , Bacteriófagos , Antígenos de Grupos Sanguíneos , Aminoácidos , Dimerização , Endonucleases , Escherichia coli
4.
Nat Commun ; 14(1): 4470, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491363

RESUMO

The Hermes DNA transposon is a member of the eukaryotic hAT superfamily, and its transposase forms a ring-shaped tetramer of dimers. Our investigation, combining biochemical, crystallography and cryo-electron microscopy, and in-cell assays, shows that the full-length Hermes octamer extensively interacts with its transposon left-end through multiple BED domains of three Hermes protomers contributed by three dimers explaining the role of the unusual higher-order assembly. By contrast, the right-end is bound to no BED domains at all. Thus, this work supports a model in which Hermes multimerizes to gather enough BED domains to find its left-end among the abundant genomic DNA, facilitating the subsequent interaction with the right-end.


Assuntos
Elementos de DNA Transponíveis , Eucariotos , Microscopia Crioeletrônica , Elementos de DNA Transponíveis/genética , Eucariotos/genética , Dedos de Zinco , Zinco , Transposases/genética , Transposases/metabolismo
5.
bioRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37425788

RESUMO

Recombination-promoting nuclease (Rpn) proteins are broadly distributed across bacterial phyla, yet their functions remain unclear. Here we report these proteins are new toxin-antitoxin systems, comprised of genes-within-genes, that combat phage infection. We show the small, highly variable Rpn C -terminal domains (Rpn S ), which are translated separately from the full-length proteins (Rpn L ), directly block the activities of the toxic full-length proteins. The crystal structure of RpnA S revealed a dimerization interface encompassing a helix that can have four amino acid repeats whose number varies widely among strains of the same species. Consistent with strong selection for the variation, we document plasmid-encoded RpnP2 L protects Escherichia coli against certain phages. We propose many more intragenic-encoded proteins that serve regulatory roles remain to be discovered in all organisms. Significance: Here we document the function of small genes-within-genes, showing they encode antitoxin proteins that block the functions of the toxic DNA endonuclease proteins encoded by the longer rpn genes. Intriguingly, a sequence present in both long and short protein shows extensive variation in the number of four amino acid repeats. Consistent with a strong selection for the variation, we provide evidence that the Rpn proteins represent a phage defense system.

6.
Nucleic Acids Res ; 50(22): 13128-13142, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36537219

RESUMO

DNA transposon systems are widely used in mammalian cells for genetic modification experiments, but their regulation remains poorly understood. We used biochemical and cell-based assays together with AlphaFold modeling and rational protein redesign to evaluate aspects of piggyBac transposition including the previously unexplained role of the transposase N-terminus and the need for asymmetric transposon ends for cellular activity. We found that phosphorylation at predicted casein kinase II sites in the transposase N-terminus inhibits transposition, most likely by preventing transposase-DNA interactions. Deletion of the region containing these sites releases inhibition thereby enhancing activity. We also found that the N-terminal domain promotes transposase dimerization in the absence of transposon DNA. When the N-terminus is deleted, the transposase gains the ability to carry out transposition using symmetric transposon left ends. This novel activity is also conferred by appending a second C-terminal domain. When combined, these modifications together result in a transposase that is highly active when symmetric transposon ends are used. Our results demonstrate that transposase N-terminal phosphorylation and the requirement for asymmetric transposon ends both negatively regulate piggyBac transposition in mammalian cells. These novel insights into the mechanism and structure of the piggyBac transposase expand its potential use for genomic applications.


Assuntos
Elementos de DNA Transponíveis , Transposases , Humanos , Elementos de DNA Transponíveis/genética , Fosforilação , Transposases/metabolismo , Linhagem Celular
7.
Mol Cell ; 81(20): 4271-4286.e4, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34403695

RESUMO

Helitrons are widespread eukaryotic DNA transposons that have significantly contributed to genome variability and evolution, in part because of their distinctive, replicative rolling-circle mechanism, which often mobilizes adjacent genes. Although most eukaryotic transposases form oligomers and use RNase H-like domains to break and rejoin double-stranded DNA (dsDNA), Helitron transposases contain a single-stranded DNA (ssDNA)-specific HUH endonuclease domain. Here, we report the cryo-electron microscopy structure of a Helitron transposase bound to the 5'-transposon end, providing insight into its multidomain architecture and function. The monomeric transposase forms a tightly packed assembly that buries the covalently attached cleaved end, protecting it until the second end becomes available. The structure reveals unexpected architectural similarity to TraI, a bacterial relaxase that also catalyzes ssDNA movement. The HUH active site suggests how two juxtaposed tyrosines, a feature of many replication initiators that use HUH nucleases, couple the conformational shift of an α-helix to control strand cleavage and ligation reactions.


Assuntos
Quirópteros/metabolismo , Elementos de DNA Transponíveis , DNA de Cadeia Simples/metabolismo , Transposases/metabolismo , Animais , Domínio Catalítico , Quirópteros/genética , Microscopia Crioeletrônica , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/ultraestrutura , Células HEK293 , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Transposases/genética , Transposases/ultraestrutura , Tirosina
8.
EMBO J ; 40(1): e105666, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33006208

RESUMO

Copy-out/paste-in transposition is a major bacterial DNA mobility pathway. It contributes significantly to the emergence of antibiotic resistance, often by upregulating expression of downstream genes upon integration. Unlike other transposition pathways, it requires both asymmetric and symmetric strand transfer steps. Here, we report the first structural study of a copy-out/paste-in transposase and demonstrate its ability to catalyze all pathway steps in vitro. X-ray structures of ISCth4 transposase, a member of the IS256 family of insertion sequences, bound to DNA substrates corresponding to three sequential steps in the reaction reveal an unusual asymmetric dimeric transpososome. During transposition, an array of N-terminal domains binds a single transposon end while the catalytic domain moves to accommodate the varying substrates. These conformational changes control the path of DNA flanking the transposon end and the generation of DNA-binding sites. Our results explain the asymmetric outcome of the initial strand transfer and show how DNA binding is modulated by the asymmetric transposase to allow the capture of a second transposon end and to integrate a circular intermediate.


Assuntos
Elementos de DNA Transponíveis/genética , DNA Bacteriano/genética , Transposases/genética , Sequência de Bases , Sítios de Ligação/genética , Catálise , Domínio Catalítico/genética , Clostridium thermocellum/genética , Clivagem do DNA , Proteínas de Ligação a DNA/genética , Recombinação Genética/genética
9.
Nat Commun ; 11(1): 3446, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651359

RESUMO

The piggyBac DNA transposon is used widely in genome engineering applications. Unlike other transposons, its excision site can be precisely repaired without leaving footprints and it integrates specifically at TTAA tetranucleotides. We present cryo-EM structures of piggyBac transpososomes: a synaptic complex with hairpin DNA intermediates and a strand transfer complex capturing the integration step. The results show that the excised TTAA hairpin intermediate and the TTAA target adopt essentially identical conformations, providing a mechanistic link connecting the two unique properties of piggyBac. The transposase forms an asymmetric dimer in which the two central domains synapse the ends while two C-terminal domains form a separate dimer that contacts only one transposon end. In the strand transfer structure, target DNA is severely bent and the TTAA target is unpaired. In-cell data suggest that asymmetry promotes synaptic complex formation, and modifying ends with additional transposase binding sites stimulates activity.


Assuntos
Elementos de DNA Transponíveis/genética , Transposases/metabolismo , Microscopia Crioeletrônica , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Estrutura Secundária de Proteína , Transposases/genética
10.
Elife ; 92020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913120

RESUMO

Key to CRISPR-Cas adaptive immunity is maintaining an ongoing record of invading nucleic acids, a process carried out by the Cas1-Cas2 complex that integrates short segments of foreign genetic material (spacers) into the CRISPR locus. It is hypothesized that Cas1 evolved from casposases, a novel class of transposases. We show here that the Methanosarcina mazei casposase can integrate varied forms of the casposon end in vitro, and recapitulates several properties of CRISPR-Cas integrases including site-specificity. The X-ray structure of the casposase bound to DNA representing the product of integration reveals a tetramer with target DNA bound snugly between two dimers in which single-stranded casposon end binding resembles that of spacer 3'-overhangs. The differences between transposase and CRISPR-Cas integrase are largely architectural, and it appears that evolutionary change involved changes in protein-protein interactions to favor Cas2 binding over tetramerization; this in turn led to preferred integration of single spacers over two transposon ends.


Assuntos
Proteínas Arqueais/química , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA/genética , Methanosarcina/enzimologia , Transposases/química , Transposases/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas Associadas a CRISPR/química , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/química , DNA/metabolismo , Elementos de DNA Transponíveis , DNA Arqueal/química , DNA Arqueal/genética , DNA Arqueal/metabolismo , DNA Intergênico , Methanosarcina/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Multimerização Proteica , Transposases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA