Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 321(3): F378-F388, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34338032

RESUMO

Developmentally heterogeneous renin-expressing cells serve as progenitors for mural, glomerular, and tubular cells during nephrogenesis and are collectively termed renin lineage cells (RLCs). In this study, we quantified different renal vascular and tubular cell types based on specific markers and assessed proliferation and de novo differentiation in the RLC population. We used kidney sections of mRenCre-mT/mG mice throughout nephrogenesis. Marker positivity was evaluated in whole digitalized sections. At embryonic day 16, RLCs appeared in the developing kidney, and the expression of all stained markers in RLCs was observed. The proliferation rate of RLCs did not differ from the proliferation rate of non-RLCs. RLCs expanded mainly by de novo differentiation (neogenesis). Fractions of RLCs originating from the stromal progenitors of the metanephric mesenchyme (renin-producing cells, vascular smooth muscle cells, and mesangial cells) decreased during nephrogenesis. In contrast, aquaporin-2-positive RLCs in the collecting duct system, which embryonically emerges almost exclusively from the ureteric bud, expanded postpartum. The cubilin-positive RLC fraction in the proximal tubule, deriving from the cap mesenchyme, remained constant. In summary, RLCs were continuously detectable in the vascular and tubular compartments of the kidney during nephrogenesis. Therein, various patterns of RLC differentiation that depend on the embryonic origin of the cells were identified.NEW & NOTEWORTHY The unifying feature of the renal renin lineage cells (RLCs) is their origin from renin-expressing progenitors. RLCs evolve to an embryologically heterogeneous large population in structures with different ancestry. RLCs are also targets for the widely used renin-angiotensin-system blockers, which modulate their phenotype. Unveiling the different differentiation patterns of RLCs in the developing kidney contributes to understanding changes in their cell fate in response to homeostatic challenges and the use of antihypertensive drugs.


Assuntos
Diferenciação Celular/fisiologia , Glomérulos Renais/metabolismo , Rim/metabolismo , Células Mesangiais/metabolismo , Renina/metabolismo , Animais , Linhagem da Célula/fisiologia , Mesoderma/metabolismo , Camundongos , Células-Tronco/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-32691160

RESUMO

The juxtaglomerular renin-producing cells (RPC) of the kidney are referred to as the major source of circulating renin. Renin is the limiting factor in renin-angiotensin system (RAS), which represents a proteolytic cascade in blood plasma that plays a central role in the regulation of blood pressure. Further cells disseminated in the entire organism express renin at a low level as part of tissue RASs, which are thought to locally modulate the effects of systemic RAS. In recent years, it became increasingly clear that the renal RPC are involved in developmental, physiological, and pathophysiological processes outside RAS. Based on recent experimental evidence, a novel concept emerges postulating that next to their traditional role, the RPC have non-canonical RAS-independent progenitor and renoprotective functions. Moreover, the RPC are part of a widespread renin lineage population, which may act as a global stem cell pool coordinating homeostatic, stress, and regenerative responses throughout the organism. This review focuses on the RAS-unrelated functions of RPC - a dynamic research area that increasingly attracts attention.


Assuntos
Rim/citologia , Sistema Renina-Angiotensina , Renina , Pressão Sanguínea , Humanos , Rim/metabolismo , Renina/metabolismo , Células-Tronco/metabolismo
3.
Pflugers Arch ; 471(9): 1205-1217, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31388748

RESUMO

Synthesis of renin in renal renin-producing cells (RPCs) is controlled via the intracellular messenger cAMP. Interference with cAMP-mediated signaling by inducible knockout of Gs-alpha (Gsα) in RPCs of adult mice resulted in a complex adverse kidney phenotype. Therein, glomerular endothelial damage was most striking. In this study, we investigated whether Gsα knockout leads to a loss of RPCs, which itself may contribute to the endothelial injury. We compared the kidney phenotype of three RPC-specific conditional mouse lines during continuous induction of recombination. Mice expressing red fluorescent reporter protein tdTomato (tdT) in RPCs served as controls. tdT was also expressed in RPCs of the other two strains used, namely with RPC-specific Gsα knockout (Gsα mice) or with RPC-specific diphtheria toxin A expression (DTA mice, in which the RPCs should be diminished). Using immunohistological analysis, we found that RPCs decreased by 82% in the kidneys of Gsα mice as compared with controls. However, the number of tdT-positive cells was similar in the two strains, demonstrating that after Gsα knockout, the RPCs persist as renin-negative descendants. In contrast, both renin-positive and tdT-labeled cells decreased by 80% in DTA mice suggesting effective RPC ablation. Only Gsα mice displayed dysregulated endothelial cell marker expression indicating glomerular endothelial damage. In addition, a robust induction of genes involved in tissue remodelling with microvascular damage was identified in tdT-labeled RPCs isolated from Gsα mice. We concluded that Gsα/renin double-negative RPC progeny essentially contributes for the development of glomerular endothelial damage in our Gsα-deficient mice.


Assuntos
AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Rim/metabolismo , Renina/metabolismo , Transdução de Sinais/fisiologia , Animais , Biomarcadores/metabolismo , Sistema Justaglomerular , Camundongos , Camundongos Transgênicos , Fenótipo
4.
J Am Soc Nephrol ; 28(12): 3479-3489, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28775003

RESUMO

Intracellular cAMP, the production of which is catalyzed by the α-subunit of the stimulatory G protein (Gsα), controls renin synthesis and release by juxtaglomerular (JG) cells of the kidney, but may also have relevance for the physiologic integrity of the kidney. To investigate this possibility, we generated mice with inducible knockout of Gsα in JG cells and monitored them for 6 months after induction at 6 weeks of age. The knockout mapped exclusively to the JG cells of the Gsα-deficient animals. Progressive albuminuria occurred in Gsα-deficient mice. Compared with controls expressing wild-type Gsα alleles, the Gsα-deficient mice had enlarged glomeruli with mesangial expansion, injury, and FSGS at study end. Ultrastructurally, the glomerular filtration barrier of the Gsα-deficient animals featured endothelial gaps, thickened basement membrane, and fibrin-like intraluminal deposits, which are classic signs of thrombotic microangiopathy. Additionally, we found endothelial damage in peritubular capillaries and vasa recta. Because deficiency of vascular endothelial growth factor (VEGF) results in thrombotic microangiopathy, we addressed the possibility that Gsα knockout may result in impaired VEGF production. We detected VEGF expression in JG cells of control mice, and cAMP agonists regulated VEGF expression in cultured renin-producing cells. Our data demonstrate that Gsα deficiency in JG cells of adult mice results in kidney injury, and suggest that JG cells are critically involved in the maintenance and protection of the renal microvascular endothelium.


Assuntos
Endotélio Vascular/patologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Rim/metabolismo , Renina/metabolismo , Albuminúria/patologia , Alelos , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Feminino , Deleção de Genes , Genótipo , Taxa de Filtração Glomerular , Homozigoto , Humanos , Hipertrofia , Sistema Justaglomerular/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação , Fenótipo , Transdução de Sinais , Trombose/genética , Trombose/patologia , Microangiopatias Trombóticas/metabolismo , Transgenes , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Kidney Int ; 92(6): 1419-1432, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28688581

RESUMO

Renin lineage cells (RLCs) serve as a progenitor cell reservoir during nephrogenesis and after renal injury. The maintenance mechanisms of the RLC pool are still poorly understood. Since RLCs were also identified as a progenitor cell population in bone marrow we first considered that these may be their source in the kidney. However, transplantation experiments in adult mice demonstrated that bone marrow-derived cells do not give rise to RLCs in the kidney indicating their non-hematopoietic origin. Therefore we tested whether RLCs develop in the kidney through neogenesis (de novo differentiation) from cells that have never expressed renin before. We used a murine model to track neogenesis of RLCs by flow cytometry, histochemistry, and intravital kidney imaging. During nephrogenesis RLCs first appear at e14, form a distinct population at e16, and expand to reach a steady state level of 8-10% of all kidney cells in adulthood. De novo differentiated RLCs persist as a clearly detectable population through embryogenesis until at least eight months after birth. Pharmacologic stimulation of renin production with enalapril or glomerular injury induced the rate of RLC neogenesis in the adult mouse kidney by 14% or more than three-fold, respectively. Thus, the renal RLC niche is constantly filled by local de novo differentiation. This process could be stimulated consequently representing a new potential target to beneficially influence repair and regeneration after kidney injury.


Assuntos
Injúria Renal Aguda/patologia , Diferenciação Celular/fisiologia , Mesângio Glomerular/fisiologia , Regeneração/efeitos dos fármacos , Renina/metabolismo , Células-Tronco/fisiologia , Injúria Renal Aguda/induzido quimicamente , Animais , Biópsia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Transplante de Medula Óssea/métodos , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/fisiologia , Enalapril/farmacologia , Mesângio Glomerular/citologia , Mesângio Glomerular/efeitos dos fármacos , Mesângio Glomerular/patologia , Humanos , Lipopolissacarídeos/toxicidade , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/patologia , Células Mesangiais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Renina/genética , Células-Tronco/efeitos dos fármacos
6.
Pflugers Arch ; 469(10): 1349-1357, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28534088

RESUMO

We reported earlier that PPAR-gamma regulates renin transcription through a human-specific atypical binding sequence termed hRen-Pal3. Here we developed a mouse model to investigate the functional relevance of the hRen-Pal3 sequence in vivo since it might be responsible for the increased renin production in obesity and thus for the development of accompanying arterial hypertension. We used bacterial artificial chromosome construct and co-placement strategy to generate two transgenic mouse lines expressing the human renin gene from identical genomic locus without affecting the intrinsic mouse renin expression. One line carried a wild-type hRen-Pal3 in the transgene (Pal3wt strain) and the other a mutated non-functional Pal3 (Pal3mut strain). Human renin expression was correctly targeted to the renin-producing juxtaglomerular (JG) cells of kidney in both lines. However, Pal3mut mice had lower basal human renin expression. Since human renin does not recognize mouse angiotensinogen as substrate, the blood pressure was not different between the strains. Stimulation of renin production with the angiotensin-converting enzyme inhibitor enalapril equipotentially stimulated the human renin expression in Pal3wt and Pal3mut mice. High-fat diet for 10 weeks which is known to activate PPAR-gamma failed to increase human renin mRNA in kidneys of either strain. These findings showed that the human renin PPAR-gamma-binding sequence hRen-Pal3 is essential for basal renin expression but dispensable for the cell-specific and high-fat diet regulated renin expression in the kidney.


Assuntos
Dieta Hiperlipídica , Hipertensão/metabolismo , Rim/metabolismo , PPAR gama/metabolismo , Renina/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Sistema Justaglomerular/metabolismo , Camundongos Transgênicos , Sistema Renina-Angiotensina/fisiologia
7.
J Natl Cancer Inst ; 107(2)2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25663685

RESUMO

BACKGROUND: Signaling from integrins and receptor tyrosine kinases (RTKs) contributes substantially to therapy resistance of malignant tumors. We investigated simultaneous ß1 integrin-epidermal growth factor receptor (EGFR) targeting plus radiotherapy in human head and neck squamous cell carcinomas (HNSCCs). METHODS: Ten HNSCC cell lines were grown in three-dimensional laminin-rich extracellular matrix cell cultures and two of them as tumor xenografts in nude mice (n = 12-16 per group). Targeting of ß1 integrin and EGFR with monoclonal inhibitory antibodies (AIIB2 and cetuximab, respectively) was combined with x-ray irradiation. Clonogenic survival, tumor growth, and tumor control (evaluated by Kaplan-Meier analysis), apoptosis, phosphoproteome (interactome, network betweeness centrality analysis), receptor expression (immunohistochemistry), and downstream signaling (western blotting) were assessed. Various mutants of the integrin signaling mediator focal adhesion kinase (FAK) were employed for mechanistic studies. All statistical tests were two-sided. RESULTS: Compared with ß1 integrin or EGFR single inhibition, combined ß1 integrin-EGFR targeting resulted in enhanced cytotoxicity and radiosensitization in eight out of 10 tested HNSCC cell lines, which responded with an FAK dephosphorylation after ß1 integrin inhibition. In vivo, simultaneous anti-ß1 integrin/anti-EGFR treatment and radiotherapy of UTSCC15 responder xenografts enabled better tumor control compared with anti-EGFR monotherapy and irradiation (hazard ratio [HR] = 6.9, 95% confidence interval [CI] = 1.6 to 30.9, P = .01), in contrast to the SAS nonresponder tumor model (HR = 0.9, 95% CI = 0.4 to 2.3, P = .83). Mechanistically, a protein complex consisting of FAK- and Erk1-mediated prosurvival signals for radiation resistance, which was effectively compromised by ß1 integrin and EGFR blocking. CONCLUSIONS: Concomitant targeting of ß1 integrin and EGFR seems a powerful and promising approach to overcome radioresistance of HNSCCs.


Assuntos
Anticorpos Monoclonais/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma de Células Escamosas/terapia , Receptores ErbB/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/terapia , Integrina beta1/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose , Western Blotting , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/radioterapia , Linhagem Celular Tumoral , Cetuximab , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Camundongos , Camundongos Nus , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Razão de Chances , Radiossensibilizantes/uso terapêutico , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Am Soc Nephrol ; 26(1): 48-54, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24904091

RESUMO

Mesangial cell injury has a major role in many CKDs. Because renin-positive precursor cells give rise to mesangial cells during nephrogenesis, this study tested the hypothesis that the same phenomenon contributes to glomerular regeneration after murine experimental mesangial injury. Mesangiolysis was induced by administration of an anti-mesangial cell serum in combination with LPS. In enhanced green fluorescent protein-reporter mice with constitutively labeled renin lineage cells, the size of the enhanced green fluorescent protein-positive area in the glomerular tufts increased after mesangial injury. Furthermore, we generated a novel Tet-on inducible triple-transgenic LacZ reporter line that allowed selective labeling of renin cells along renal afferent arterioles of adult mice. Although no intraglomerular LacZ expression was detected in healthy mice, about two-thirds of the glomerular tufts became LacZ positive during the regenerative phase after severe mesangial injury. Intraglomerular renin descendant LacZ-expressing cells colocalized with mesangial cell markers α8-integrin and PDGF receptor-ß but not with endothelial, podocyte, or parietal epithelial cell markers. In contrast with LacZ-positive cells in the afferent arterioles, LacZ-positive cells in the glomerular tuft did not express renin. These data demonstrate that extraglomerular renin lineage cells represent a major source of repopulating cells for reconstitution of the intraglomerular mesangium after injury.


Assuntos
Linhagem da Célula , Mesângio Glomerular/metabolismo , Rim/lesões , Renina/fisiologia , Animais , Animais Geneticamente Modificados , Doxiciclina/administração & dosagem , Enalapril/administração & dosagem , Feminino , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Imageamento Tridimensional , Glomérulos Renais/metabolismo , Óperon Lac , Lipopolissacarídeos/química , Masculino , Camundongos , Camundongos Transgênicos , Renina/metabolismo , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...