Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(46): 16457-16471, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37946515

RESUMO

Monolayers self-assembled by triphenyleneethynylene (TPE) compounds bearing two terminal alkynyl chains were polymerized by Glaser-Hay (G-H) alkyne coupling at the acetonitrile-HOPG interface. The alkynyl chains extend into the solution due to the monolayer's dense-packed morphology. Reacting substructures that have no morphology-determining roles is a potential strategy for preserving monolayer morphology throughout polymerization. Monolayer G-H reaction kinetics and polymerized monolayer durability were characterized by using mass spectrometry and fluorescence. Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) and time-of-flight (TOF) MS were used to identify TPE-oligomers in the monolayer and to track the monolayer populations of TPE-monomer, -dimer, and -trimer as a function of G-H reaction duration. Comparison of the observed kinetics to a Monte Carlo simulation provided evidence of step-growth polymerization. The durability of polymerized monolayers depended strongly on the length of the alkynyl chains linked by G-H reaction. Polymerized T6y monolayers (O(CH2)3C≡CH alkynyl chains) desorbed minimally during 16-h immersion in 90 °C o-dichlorobenzene (oDCB), whereas polymerized T8y (O(CH2)5C≡CH alkynyl chains) and polymerized T11y (O(CH2)8C≡CH alkynyl chains), desorbed 33 and 60%, respectively, of their TPE units after 4 h in 90 °C oDCB. All the polymerized monolayers are much more durable than unpolymerized monolayers, which desorb quantitatively from HOPG when rinsed with 25 µL of oDCB. Polymerized T6y monolayer is a highly durable anchor that may be adapted to build multilayer structures "permanently" attached to the HOPG surface. The alkynyl chain length dependence may be useful for tuning polymerized TPE monolayer durability for specific applications.

2.
Bioorg Med Chem Lett ; 66: 128732, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427739

RESUMO

In the past two years, the COVID-19 pandemic has caused over 5 million deaths and 250 million infections worldwide. Despite successful vaccination efforts and emergency approval of small molecule therapies, a diverse range of antivirals is still needed to combat the inevitable resistance that will arise from new SARS-CoV-2 variants. The main protease of SARS-CoV-2 (Mpro) is an attractive drug target due to the clinical success of protease inhibitors against other viruses, such as HIV and HCV. However, in order to combat resistance, various chemical scaffolds need to be identified that have the potential to be developed into potent inhibitors. To this end, we screened a high-content protease inhibitor library against Mproin vitro, in order to identify structurally diverse compounds that could be further developed into antiviral leads. Our high-content screening efforts retrieved 27 hits each with > 50% inhibition in our Mpro FRET assay. Of these, four of the top inhibitor compounds were chosen for follow-up due to their potency and drugability (Lipinski's rules of five criteria): anacardic acid, aloesin, aloeresin D, and TCID. Further analysis via dose response curves revealed IC50 values of 6.8 µM, 38.9 µM, 125.3 µM, and 138.0 µM for each compound, respectively. Molecular docking studies demonstrated that the four inhibitors bound at the catalytic active site of Mpro with varying binding energies (-7.5 to -5.6 kcal/mol). Furthermore, Mpro FRET assay kinetic studies demonstrated that Mpro catalysis is better represented by a sigmoidal Hill model than the standard Michaelis-Menten hyperbola, indicating substantial cooperativity of the active enzyme dimer. This result suggests that the dimerization interface could be an attractive target for allosteric inhibitors. In conclusion, we identified two closely-related natural product compounds from the Aloe plant (aloesin and aloeresin D) that may serve as novel scaffolds for Mpro inhibitor design and additionally confirmed the strongly cooperative kinetics of Mpro proteolysis. These results further advance our knowledge of structure-function relationships in Mpro and offer new molecular scaffolds for inhibitor design.


Assuntos
Aloe , Produtos Biológicos , COVID-19 , Antivirais/química , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Proteases 3C de Coronavírus , Humanos , Cinética , Simulação de Acoplamento Molecular , Pandemias , Estudos Prospectivos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA