Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 35(37): 4836-45, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876210

RESUMO

Rad54 and Mus81 mammalian proteins physically interact and are important for the homologous recombination DNA repair pathway; however, their functional interactions in vivo are poorly defined. Here, we show that combinatorial loss of Rad54 and Mus81 results in hypersensitivity to DNA-damaging agents, defects on both the homologous recombination and non-homologous DNA end joining repair pathways and reduced fertility. We also observed that while Mus81 deficiency diminished the cleavage of common fragile sites, very strikingly, Rad54 loss impaired this cleavage to even a greater extent. The inefficient repair of DNA double-strand breaks (DSBs) in Rad54(-/-)Mus81(-/-) cells was accompanied by elevated levels of chromosome missegregation and cell death. Perhaps as a consequence, tumor incidence in Rad54(-/-)Mus81(-/-) mice remained comparable to that in Mus81(-/-) mice. Our study highlights the importance of the cooperation between Rad54 and Mus81 for mediating DNA DSB repair and restraining chromosome missegregation.


Assuntos
DNA Helicases/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Neoplasias/genética , Proteínas Nucleares/genética , Animais , Cromossomos/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/genética , Recombinação Homóloga/genética , Humanos , Camundongos , Camundongos Knockout , Neoplasias/patologia
2.
Br J Cancer ; 104(4): 653-63, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21266972

RESUMO

AIMS: Modulation of DNA base excision repair (BER) has the potential to enhance response to chemotherapy and improve outcomes in tumours such as melanoma and glioma. APE1, a critical protein in BER that processes potentially cytotoxic abasic sites (AP sites), is a promising new target in cancer. In the current study, we aimed to develop small molecule inhibitors of APE1 for cancer therapy. METHODS: An industry-standard high throughput virtual screening strategy was adopted. The Sybyl8.0 (Tripos, St Louis, MO, USA) molecular modelling software suite was used to build inhibitor templates. Similarity searching strategies were then applied using ROCS 2.3 (Open Eye Scientific, Santa Fe, NM, USA) to extract pharmacophorically related subsets of compounds from a chemically diverse database of 2.6 million compounds. The compounds in these subsets were subjected to docking against the active site of the APE1 model, using the genetic algorithm-based programme GOLD2.7 (CCDC, Cambridge, UK). Predicted ligand poses were ranked on the basis of several scoring functions. The top virtual hits with promising pharmaceutical properties underwent detailed in vitro analyses using fluorescence-based APE1 cleavage assays and counter screened using endonuclease IV cleavage assays, fluorescence quenching assays and radiolabelled oligonucleotide assays. Biochemical APE1 inhibitors were then subjected to detailed cytotoxicity analyses. RESULTS: Several specific APE1 inhibitors were isolated by this approach. The IC(50) for APE1 inhibition ranged between 30 nM and 50 µM. We demonstrated that APE1 inhibitors lead to accumulation of AP sites in genomic DNA and potentiated the cytotoxicity of alkylating agents in melanoma and glioma cell lines. CONCLUSIONS: Our study provides evidence that APE1 is an emerging drug target and could have therapeutic application in patients with melanoma and glioma.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/uso terapêutico , Glioma/tratamento farmacológico , Melanoma/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Glioma/patologia , Células HeLa , Ensaios de Triagem em Larga Escala/métodos , Humanos , Concentração Inibidora 50 , Melanoma/patologia , Modelos Biológicos , Modelos Moleculares , Relação Estrutura-Atividade
3.
Oncogene ; 29(33): 4705-14, 2010 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-20531307

RESUMO

BLM is a RecQ family helicase that is defective in individuals with the cancer predisposition disorder, Bloom's syndrome (BS). At the cellular level, BS is characterized by hyper-recombination manifested as excessive sister chromatid exchange and loss of heterozygosity. However, the precise function of BLM remains unclear. Multiple roles have been proposed for BLM in the homologous recombination (HR) repair pathway, including 'early' functions, such as the stimulation of resection of DNA double-strand break ends or displacement of the invading strand of DNA displacement loops, and 'late' roles, such as dissolution of double Holliday junctions. However, most of the evidence for these putative roles comes from in vitro biochemical data. In this study, we report the characterization of mouse embryonic stem cells with disruption of Blm and/or Rad54 genes. We show that Blm has roles both upstream and downstream of the Rad54 protein, a core HR factor. Disruption of Rad54 in the Blm-mutant background reduced the elevated level of gene targeting and of sister chromatid exchanges, implying that Blm primarily functions downstream of Rad54 in the HR pathway. Conversely, however, mutation of Blm in Rad54(-/-) cells rescued their mitomycin C (MMC) sensitivity, and decreased both the level of DNA damage and cell cycle perturbation induced by MMC, suggesting an early role for Blm. Our data are consistent with Blm having at least two roles in HR repair in mammalian cells.


Assuntos
Reparo do DNA , Células-Tronco Embrionárias/fisiologia , RecQ Helicases/genética , Recombinação Genética , Animais , Linhagem Celular Tumoral , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Marcação de Genes , Immunoblotting , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RecQ Helicases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Troca de Cromátide Irmã
4.
Cytogenet Genome Res ; 125(3): 165-75, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19738377

RESUMO

The Bloom protein (BLM) and Topoisomerase IIIalpha are found in association with proteins of the Fanconi anemia (FA) pathway, a disorder manifesting increased cellular sensitivity to DNA crosslinking agents. In order to determine if the association reflects a functional interaction for the maintenance of genome stability, we have analyzed the effects of siRNA-mediated depletion of the proteins in human cells. Depletion of Topoisomerase IIIalpha or BLM leads to increased radial formation, as is seen in FA. BLM and Topoisomerase IIIalpha are epistatic to the FA pathway for suppression of radial formation in response to DNA interstrand crosslinks since depletion of either of them in FA cells does not increase radial formation. Depletion of Topoisomerase IIIalpha or BLM also causes an increase in sister chromatid exchanges, as is seen in Bloom syndrome cells. Human Fanconi anemia cells, however, do not demonstrate increased sister chromatid exchanges, separating this response from radial formation. Primary cell lines from mice defective in both Blm and Fancd2 have the same interstrand crosslink-induced genome instability as cells from mice deficient in the Fancd2 protein alone. These observations demonstrate that the association of BLM and Topoisomerase IIIalpha with Fanconi proteins is a functional one, delineating a BLM-Topoisomerase IIIalpha-Fanconi pathway that is critical for suppression of chromosome radial formation.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , DNA/metabolismo , Anemia de Fanconi/metabolismo , RecQ Helicases/metabolismo , Animais , Linhagem Celular , Reagentes de Ligações Cruzadas/farmacologia , DNA Topoisomerases Tipo I/genética , Anemia de Fanconi/genética , Instabilidade Genômica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitomicina/farmacologia , RNA Interferente Pequeno/genética , RecQ Helicases/genética , Troca de Cromátide Irmã
5.
Cell Mol Life Sci ; 64(17): 2306-22, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17571213

RESUMO

The RecQ helicases belong to the Superfamily II group of DNA helicases, and are defined by amino acid motifs that show sequence similarity to the catalytic domain of Escherichia coli RecQ. RecQ helicases have crucial roles in the maintenance of genome stability. In humans, there are five RecQ helicases and deficiencies in three of them cause genetic disorders characterised by cancer predisposition, premature aging and/or developmental abnormalities. RecQ helicase-deficient cells exhibit aberrant genetic recombination and/or DNA replication, which result in chromosomal instability and a decreased potential for proliferation. Here, we review the current knowledge of the molecular genetics of RecQ helicases, focusing on the human RecQ helicase disorders and mouse models of these conditions.


Assuntos
Distúrbios no Reparo do DNA/genética , RecQ Helicases/fisiologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Animais , Síndrome de Bloom/diagnóstico , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Senescência Celular/genética , Dano ao DNA , DNA Helicases/genética , DNA Helicases/fisiologia , Distúrbios no Reparo do DNA/diagnóstico , Distúrbios no Reparo do DNA/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Fenótipo , RecQ Helicases/química , RecQ Helicases/genética , Recombinação Genética , Síndrome , Síndrome de Werner/diagnóstico , Síndrome de Werner/genética , Síndrome de Werner/metabolismo
6.
Oncogene ; 25(14): 2119-23, 2006 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-16288211

RESUMO

A subset of DNA helicases, the RecQ family, has been found to be associated with the p53-mediated apoptotic pathway and is involved in maintaining genomic integrity. This family contains the BLM and WRN helicases, in which germline mutations are responsible for Bloom and Werner syndromes, respectively. TFIIH DNA helicases, XPB and XPD, are also components in this apoptotic pathway. We hypothesized that there may be some redundancy between helicases in their ability to complement the attenuated p53-mediated apoptotic levels seen in cells from individuals with diseases associated with these defective helicase genes. The attenuated apoptotic phenotype in Bloom syndrome cells was rescued not only by ectopic expression of BLM, but also by WRN or XPB, both 3' --> 5' helicases, but not expression of the 5' --> 3' helicase XPD. Overexpression of Sgs1, a WRN/BLM yeast homolog, corrected the reduction in BS cells only, which is consistent with Sgs1 being evolutionarily most homologous to BLM. A restoration of apoptotic levels in cells from WS, XPB or XPD patients was attained only by overexpression of the specific helicase. Our data suggest a limited redundancy in the pathways of these RecQ helicases in p53-induced apoptosis.


Assuntos
Apoptose/fisiologia , DNA Helicases/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Síndrome de Bloom/enzimologia , Mutação em Linhagem Germinativa , Humanos , Síndrome de Werner/enzimologia
7.
Biochem Soc Trans ; 33(Pt 6): 1456-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16246145

RESUMO

The RecQ family of DNA helicases is highly conserved in evolution from bacteria to humans. Of the five known human RecQ family members, three (BLM, WRN and RECQ4, which cause Bloom's syndrome, Werner's syndrome and Rothmund-Thomson syndrome respectively) are mutated in distinct clinical disorders associated with cancer predisposition and/or premature aging. BLM forms part of a multienzyme complex including topoisomerase IIIalpha, replication protein A and a newly identified factor called BLAP75. Together, these proteins play a role in the resolution of DNA structures that arise during the process of homologous recombination repair. In the absence of BLM, cells show genomic instability and a high incidence of sister-chromatid exchanges. In addition to a DNA structure-specific helicase activity, BLM also catalyses Holliday-junction branch migration and the annealing of complementary single-stranded DNA molecules.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , Instabilidade Genômica , Recombinação Genética , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , DNA Cruciforme , DNA de Cadeia Simples , Exodesoxirribonucleases , Humanos , Conformação de Ácido Nucleico , RecQ Helicases , Síndrome de Werner/genética , Síndrome de Werner/metabolismo , Helicase da Síndrome de Werner
8.
Br J Cancer ; 93(1): 60-9, 2005 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-15956976

RESUMO

A pharmacokinetically guided phase I study of topotecan and etoposide phosphate was conducted in recurrent ovarian cancer. The scheduling of the topoisomerase I and II inhibitors was determined using in vitro activity data. All patients had recurrent disease following prior platinum-containing chemotherapy. Patients had a World Health Organisation performance status of 0-2 and adequate bone marrow, renal and hepatic function. Treatment was with topotecan intravenously for 5 days followed immediately by a 5-day intravenous infusion of etoposide phosphate (EP), with pharmacokinetically guided dose adjustment. Plasma etoposide levels were measured on days 2 and 4 of the infusion. A total of 21 patients entered the study. In all, 48% were platinum resistant and 71% had received prior paclitaxel. The main toxicities were haematological, short lived and reversible. A total of 29% of patients experienced grade 4 thrombocytopenia and 66% grade 4 neutropenia after the first cycle. Neutropenia and thrombocytopenia was dose limiting. The maximum-tolerated dose was topotecan 0.85 mg m(-2) day(-1) days 1-5 followed immediately by a 5-day infusion of EP at a plasma concentration of 1 mug ml(-1). The response rate (RR) was 28% in 18 evaluable patients. There was marked interpatient variability in topoisomerase IIalpha levels measured from peripheral lymphocytes, with no observed increase following topotecan. This regimen of topotecan followed by EP demonstrated good activity in recurrent ovarian cancer and was noncrossresistant with paclitaxel. Both the toxicity and RR was higher than would be expected from the single agent data, in keeping with synergy of action.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Neoplasias Ovarianas/tratamento farmacológico , Adulto , Idoso , Antígenos de Neoplasias/sangue , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , DNA Topoisomerases Tipo II/sangue , Proteínas de Ligação a DNA/sangue , Etoposídeo/administração & dosagem , Etoposídeo/efeitos adversos , Etoposídeo/análogos & derivados , Etoposídeo/farmacocinética , Feminino , Humanos , Pessoa de Meia-Idade , Compostos Organofosforados/administração & dosagem , Compostos Organofosforados/efeitos adversos , Compostos Organofosforados/farmacocinética , Qualidade de Vida , Recidiva , Topotecan/administração & dosagem , Topotecan/efeitos adversos , Topotecan/farmacocinética
9.
Biochem Soc Trans ; 32(Pt 6): 957-8, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15506934

RESUMO

RecQ helicases are evolutionarily conserved enzymes required for the maintenance of genome stability. Mutations in three of the five known human RecQ helicase genes cause distinct clinical disorders that are characterized by genome instability and cancer predisposition. Recent studies have begun to reveal the cellular roles of RecQ helicases and how these enzymes may prevent tumorigenesis at the molecular level.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , Genoma , Neoplasias/prevenção & controle , Animais , Humanos , Modelos Genéticos , RecQ Helicases , Saccharomyces cerevisiae/enzimologia
10.
Nucleic Acids Res ; 30(10): 2124-30, 2002 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12000832

RESUMO

In mammalian cells, repair of the most abundant endogenous premutagenic lesion in DNA, 7,8-dihydro-8-oxoguanine (8-oxoG), is initiated by the bifunctional DNA glycosylase OGG1. By using purified human proteins, we have reconstituted repair of 8-oxoG lesions in DNA in vitro on a plasmid DNA substrate containing a single 8-oxoG residue. It is shown that efficient and complete repair requires only hOGG1, the AP endonuclease HAP1, DNA polymerase (Pol) beta and DNA ligase I. After glycosylase base removal, repair occurred through the AP lyase step of hOGG1 followed by removal of the 3'-terminal sugar phosphate by the 3'-diesterase activity of HAP1. Addition of PCNA had a slight stimulatory effect on repair. Fen1 or high concentrations of Pol beta were required to induce strand displacement DNA synthesis at incised 8-oxoG in the absence of DNA ligase. Fen1 induced Pol beta strand displacement DNA synthesis at HAP1-cleaved AP sites differently from that at gaps introduced by hOGG1/HAP1 at 8-oxoG sites. In the presence of DNA ligase I, the repair reaction at 8-oxoG was confined to 1 nt replacement, even in the presence of high levels of Pol beta and Fen1. Thus, the assembly of all the core proteins for 8-oxoG repair catalyses one major pathway that involves single nucleotide repair patches.


Assuntos
Reparo do DNA , Guanina/metabolismo , N-Glicosil Hidrolases/metabolismo , Sequência de Bases , Carbono-Oxigênio Liases/metabolismo , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , DNA Polimerase beta/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Proteínas de Ligação a DNA/metabolismo , DNA-Formamidopirimidina Glicosilase , Endodesoxirribonucleases/metabolismo , Endonucleases Flap , Guanina/análogos & derivados , Humanos , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação C
11.
Biochemistry ; 40(50): 15194-202, 2001 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-11735402

RESUMO

G-Quadruplex DNAs are folded, non-Watson-Crick structures that can form within guanine-rich DNA sequences such as telomeric repeats. Previous studies have identified a series of trisubstituted acridine derivatives that are potent and selective ligands for G-quadruplex DNA. These ligands have been shown previously to inhibit the activity of telomerase, the specialized reverse transcriptase that regulates telomere length. The RecQ family of DNA helicases, which includes the Bloom's (BLM) and Werner's (WRN) syndrome gene products, are apparently unique among cellular helicases in their ability to efficiently disrupt G-quadruplex DNA. This property may be relevant to telomere maintenance, since it is known that the sole budding yeast RecQ helicase, Sgs1p, is required for a telomerase-independent telomere lengthening pathway reminiscent of the "ALT" pathway in human cells. Here, we show that trisubstituted acridine ligands are potent inhibitors of the helicase activity of the BLM and WRN proteins on both G-quadruplex and B-form DNA substrates. Inhibition of helicase activity is associated with both a reduction in the level of binding of the helicase to G-quadruplex DNA and a reduction in the degree to which the G-quadruplex DNA can support DNA-dependent ATPase activity. We discuss these results in the context of the possible utility of trisubstituted acridines as antitumor agents for the disruption of both telomerase-dependent and telomerase-independent telomere maintenance.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Síndrome de Bloom/enzimologia , DNA Helicases/antagonistas & inibidores , DNA/farmacologia , Síndrome de Werner/enzimologia , Acridinas/química , Acridinas/farmacologia , Adenosina Trifosfatases/genética , Antineoplásicos/química , Antineoplásicos/farmacologia , Sequência de Bases , Síndrome de Bloom/genética , DNA/química , DNA Helicases/genética , Humanos , Técnicas In Vitro , Ligantes , Conformação de Ácido Nucleico , RecQ Helicases , Telômero/efeitos dos fármacos , Síndrome de Werner/genética
12.
Nucleic Acids Res ; 29(21): 4378-86, 2001 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-11691925

RESUMO

Bloom's syndrome (BS) is a rare genetic disorder characterised by genomic instability and cancer susceptibility. BLM, the gene mutated in BS, encodes a member of the RecQ family of DNA helicases. Here, we identify hMLH1, which is involved in mismatch repair (MMR) and recombination, as a protein that directly interacts with BLM both in vivo and in vitro, and that the two proteins co-localise to discrete nuclear foci. The interaction between BLM and hMLH1 appears to have been evolutionarily conserved, as Sgs1p, the Saccharomyces cerevisiae homologue of BLM, interacts with yeast Mlh1p. However, cell extracts derived from BS patients show no obvious defects in MMR compared to wild-type- and BLM-complemented BS cell extracts. We conclude that the hMLH1-BLM interaction is not essential for post-replicative MMR, but, more likely, is required for some aspect of genetic recombination.


Assuntos
Adenosina Trifosfatases/metabolismo , Pareamento Incorreto de Bases , Síndrome de Bloom , DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Neoplasias/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Adaptadoras de Transdução de Sinal , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Far-Western Blotting , Proteínas de Transporte , Linhagem Celular , Núcleo Celular/metabolismo , Sequência Conservada , DNA Helicases/química , DNA Helicases/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Proteína 1 Homóloga a MutL , Mutação/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas Nucleares/metabolismo , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , RecQ Helicases , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
13.
EMBO J ; 20(22): 6530-9, 2001 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-11707423

RESUMO

The major human AP endonuclease APE1 (HAP1, APEX, Ref1) initiates the repair of abasic sites generated either spontaneously, from attack of bases by free radicals, or during the course of the repair of damaged bases. APE1 therefore plays a central role in the base excision repair (BER) pathway. We report here that XRCC1, another essential protein involved in the maintenance of genome stability, physically interacts with APE1 and stimulates its enzymatic activities. A truncated form of APE1, lacking the first 35 amino acids, although catalytically proficient, loses the affinity for XRCC1 and is not stimulated by XRCC1. Chinese ovary cell lines mutated in XRCC1 have a diminished capacity to initiate the repair of AP sites. This defect is compensated by the expression of XRCC1. XRCC1, acting as both a scaffold and a modulator of the different activities involved in BER, would provide a physical link between the incision and sealing steps of the AP site repair process. The interaction described extends the coordinating role of XRCC1 to the initial step of the repair of DNA abasic sites.


Assuntos
Carbono-Oxigênio Liases/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Animais , Sítios de Ligação , Western Blotting , Células CHO , Catálise , Cricetinae , DNA/metabolismo , Primers do DNA/química , DNA Complementar/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Desoxirribonuclease IV (Fago T4-Induzido) , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Fatores de Tempo , Transcrição Gênica , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
14.
Mol Cell Biol ; 21(21): 7150-62, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11585898

RESUMO

Deletion of the Saccharomyces cerevisiae TOP3 gene, encoding Top3p, leads to a slow-growth phenotype characterized by an accumulation of cells with a late S/G2 content of DNA (S. Gangloff, J. P. McDonald, C. Bendixen, L. Arthur, and R. Rothstein, Mol. Cell. Biol. 14:8391-8398, 1994). We have investigated the function of TOP3 during cell cycle progression and the molecular basis for the cell cycle delay seen in top3Delta strains. We show that top3Delta mutants exhibit a RAD24-dependent delay in the G2 phase, suggesting a possible role for Top3p in the resolution of abnormal DNA structures or DNA damage arising during S phase. Consistent with this notion, top3Delta strains are sensitive to killing by a variety of DNA-damaging agents, including UV light and the alkylating agent methyl methanesulfonate, and are partially defective in the intra-S-phase checkpoint that slows the rate of S-phase progression following exposure to DNA-damaging agents. This S-phase checkpoint defect is associated with a defect in phosphorylation of Rad53p, indicating that, in the absence of Top3p, the efficiency of sensing the existence of DNA damage or signaling to the Rad53 kinase is impaired. Consistent with a role for Top3p specifically during S phase, top3Delta mutants are sensitive to the replication inhibitor hydroxyurea, expression of the TOP3 mRNA is activated in late G1 phase, and DNA damage checkpoints operating outside of S phase are unaffected by deletion of TOP3. All of these phenotypic consequences of loss of Top3p function are at least partially suppressed by deletion of SGS1, the yeast homologue of the human Bloom's and Werner's syndrome genes. These data implicate Top3p and, by inference, Sgs1p in an S-phase-specific role in the cellular response to DNA damage. A model proposing a role for these proteins in S phase is presented.


Assuntos
Proteínas de Ciclo Celular , Dano ao DNA , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo I/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Alquilantes/farmacologia , Northern Blotting , Western Blotting , Ciclo Celular , Quinase do Ponto de Checagem 2 , Relação Dose-Resposta a Droga , Citometria de Fluxo , Fase G2 , Deleção de Genes , Hidroxiureia/farmacologia , Metanossulfonato de Metila/farmacologia , Mitose , Modelos Biológicos , Mutação , Fenótipo , Fosforilação , Saccharomyces cerevisiae/enzimologia , Fatores de Tempo , Raios Ultravioleta
15.
Cell Mol Life Sci ; 58(7): 894-901, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11497238

RESUMO

Maintenance of genomic stability relies on the efficient and accurate execution of DNA repair pathways, and is essential for cell viability and the prevention of cancer. Mutation of genes encoding RecQ helicases or topoisomerases gives rise to genomic instability through excessive recombination. Here, we review the recent biochemical and genetic evidence to indicate that these two classes of protein act in concert in a conserved pathway to maintain genomic stability by preventing inappropriate recombination.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , DNA Topoisomerases Tipo I/metabolismo , Recombinação Genética , Animais , DNA Helicases/fisiologia , DNA Topoisomerases Tipo I/fisiologia , Previsões , Humanos
16.
Nucleic Acids Res ; 29(13): 2843-9, 2001 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-11433031

RESUMO

BLM and WRN, the products of the Bloom's and Werner's syndrome genes, are members of the RecQ family of DNA helicases. Although both have been shown previously to unwind simple, partial duplex DNA substrates with 3'-->5' polarity, little is known about the structural features of DNA that determine the substrate specificities of these enzymes. We have compared the substrate specificities of the BLM and WRN proteins using a variety of partial duplex DNA molecules, which are based upon a common core nucleotide sequence. We show that neither BLM nor WRN is capable of unwinding duplex DNA from a blunt-ended terminus or from an internal nick. However, both enzymes efficiently unwind the same blunt-ended duplex containing a centrally located 12 nt single-stranded 'bubble', as well as a synthetic X-structure (a model for the Holliday junction recombination intermediate) in which each 'arm' of the 4-way junction is blunt-ended. Surprisingly, a 3'-tailed duplex, a standard substrate for 3'-->5' helicases, is unwound much less efficiently by BLM and WRN than are the bubble and X-structure substrates. These data show conclusively that a single-stranded 3'-tail is not a structural requirement for unwinding of standard B-form DNA by these helicases. BLM and WRN also both unwind a variety of different forms of G-quadruplex DNA, a structure that can form at guanine-rich sequences present at several genomic loci. Our data indicate that BLM and WRN are atypical helicases that are highly DNA structure specific and have similar substrate specificities. We interpret these data in the light of the genomic instability and hyper-recombination characteristics of cells from individuals with Bloom's or Werner's syndrome.


Assuntos
Síndrome de Bloom/enzimologia , DNA Helicases/metabolismo , DNA/química , DNA/metabolismo , Conformação de Ácido Nucleico , Síndrome de Werner/enzimologia , Sequência de Bases , Síndrome de Bloom/genética , Troca Genética/genética , DNA/genética , DNA Helicases/genética , Humanos , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Especificidade por Substrato , Síndrome de Werner/genética
17.
Nucleic Acids Res ; 29(14): 2963-72, 2001 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-11452021

RESUMO

In the budding yeast Saccharomyces cerevisiae the Srs2/RadH DNA helicase promotes survival after ultraviolet (UV) irradiation, and has been implicated in DNA repair, recombination and checkpoint signalling following DNA damage. A second helicase, Sgs1, is the S.cerevisiae homologue of the human BLM and WRN proteins, which are defective in cancer predisposition and/or premature ageing syndromes. Saccharomyces cerevisiae cells lacking both Srs2 and Sgs1 exhibit a severe growth defect. We have identified an Srs2 orthologue in the fission yeast Schizosaccharomyces pombe, and have investigated its role in responses to UV irradiation and inhibition of DNA replication. Deletion of fission yeast srs2 caused spontaneous hyper-recombination and UV sensitivity, and simultaneous deletion of the SGS1 homologue rqh1 caused a severe growth defect reminiscent of that seen in the equivalent S.cerevisiae mutant. However, unlike in budding yeast, inactivation of the homologous recombination pathway did not suppress this growth defect. Indeed, the homologous recombination pathway was required for maintenance of normal fission yeast viability in the absence of Srs2, and loss of homologous recombination and loss of Srs2 contributed additively to UV sensitivity. We conclude that Srs2 plays related, but not identical, roles in the two yeast species.


Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Proteínas de Ligação a DNA , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/genética , Sequência de Aminoácidos , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Divisão Celular/efeitos da radiação , DNA Helicases/genética , Reparo do DNA , DNA Topoisomerases Tipo I/genética , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Letais , Hidroxiureia/farmacologia , Dados de Sequência Molecular , Fenótipo , Rad51 Recombinase , Recombinação Genética , Schizosaccharomyces/enzimologia , Homologia de Sequência de Aminoácidos , Raios Ultravioleta
18.
Br J Cancer ; 85(2): 261-5, 2001 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-11461087

RESUMO

Bloom's syndrome (BS) is an autosomal recessive disorder associated with a predisposition to cancers of all types. Cells from BS sufferers display extreme genomic instability. The BS gene product, BLM, is a 159 kDa DNA helicase enzyme belonging to the RecQ family. Here, we have analysed the distribution of BLM in normal and tumour tissues from humans using a recently characterized, specific monoclonal antibody. BLM was found to be localized to nuclei in normal lymphoid tissues, but was largely absent from other normal tissues analysed with the exception of the proliferating compartment of certain tissues. In contrast, expression of BLM was observed in a variety of tumours of both lymphoid and epithelial origin. A strong correlation was observed between expression of BLM and the proliferative status of cells, as determined by staining for markers of cell proliferation (PCNA and Ki67). We conclude that BLM is a proliferation marker in normal and neoplastic cells in vivo, and, as a consequence, is expressed at a higher level in tumours than in normal quiescent tissues.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , Neoplasias/metabolismo , Adenosina Trifosfatases/imunologia , Anticorpos Monoclonais/imunologia , DNA Helicases/imunologia , Humanos , Neoplasias/classificação , RecQ Helicases
19.
Nucleic Acids Res ; 29(15): 3172-80, 2001 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-11470874

RESUMO

In higher eukaryotes, the integration of signals triggered in response to certain types of stress can result in programmed cell death. Central to these events is the sequential activation of a cascade of proteinases known as caspases. The final activated effector caspases of this cascade digest a number of cellular proteins, in some cases increasing their enzymatic activity, in others destroying their function. Of the proteins shown to be targets for caspase-mediated proteolysis, a surprisingly large proportion are proteins involved in the signalling or repair of DNA damage. Here we investigate whether BLM, the product of the gene mutated in Bloom's syndrome, a human autosomal disease characterised by cancer predisposition and sunlight sensitivity, is cleaved during apoptosis. BLM interacts with topoisomerase IIIalpha and has been proposed to play an important role in maintaining genomic integrity through its roles in DNA repair and replication. We show that BLM is cleaved during apoptosis by caspase-3 and reveal that the main cleavage site is located at the junction between the N-terminal and central helicase domains of BLM. Proteolytic cleavage by caspase-3 produces a 120 kDa fragment, which contains the intact helicase domain and three smaller fragments, the relative amounts of which depend on time of incubation with caspase-3. The 120 kDa fragment retains the helicase activity of the intact BLM protein. However, its interaction with topoisomerase IIIalpha is severely impaired. Since the BLM-topoisomerase interaction is believed to be necessary for many of the replication and recombination functions of BLM, we suggest that caspase-3 cleavage of BLM could alter the localisation and/or function of BLM and that these changes may be important in the process of apoptosis.


Assuntos
Adenosina Trifosfatases/metabolismo , Apoptose , Caspases/metabolismo , DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Adenosina Trifosfatases/química , Apoptose/efeitos dos fármacos , Síndrome de Bloom/enzimologia , Caspase 3 , Cicloeximida/farmacologia , DNA Helicases/química , Etoposídeo/farmacologia , Células HL-60 , Células HeLa , Humanos , Modelos Biológicos , Peso Molecular , Ligação Proteica , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estrutura Terciária de Proteína , RecQ Helicases , Fator de Necrose Tumoral alfa/farmacologia
20.
Biochem Soc Trans ; 29(Pt 2): 201-4, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11356154

RESUMO

The RecQ family of DNA helicases has members in all organisms analysed. In humans, defects in three family members are associated with disease conditions: BLM is defective in Bloom's syndrome, WRN in Werner's syndrome and RTS in Rothmund-Thomson syndrome. In each case, cells from affected individuals show inherent genomic instability. The focus of our work is the Bloom's syndrome gene and its product, BLM. Here, we review the latest information concerning the roles of BLM in the maintenance of genome integrity.


Assuntos
Adenosina Trifosfatases/metabolismo , Síndrome de Bloom/enzimologia , DNA Helicases/metabolismo , Genoma Humano , Adenosina Trifosfatases/química , Aberrações Cromossômicas/genética , DNA Helicases/química , Humanos , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , RecQ Helicases , Recombinação Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...