Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 11: 533, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410997

RESUMO

Colorectal cancer (CRC) is one of the most common and recurrent types of cancer, with high mortality rates. Several clinical trials and meta-analyses have determined that the use of pharmacological inhibitors of cyclooxygenase 2 (COX-2), the enzyme that catalyses the rate-limiting step in the synthesis of prostaglandins (PG) from arachidonic acid, can reduce the incidence of CRC as well as the risk of recurrence of this disease, when used together with commonly used chemotherapeutic agents. These observations suggest that inhibition of COX-2 may be useful in the treatment of CRC, although the current drugs targeting COX-2 are not widely used since they increase the risk of health complications. To overcome this difficulty, a possibility is to identify genes regulated by COX-2 activity that could give an advantage to the cells to form tumors and/or metastasize. The modulation of those genes as effectors of COX-2 may cancel the beneficial effects of COX-2 in tumor transformation and metastasis. A review of the available databases and literature and our own data have identified some interesting molecules induced by prostaglandins or COX-2 that have been also described to play a role in colon cancer, being thus potential pharmacological targets in colon cancer. Among those mPGES-1, DUSP4, and 10, Programmed cell death 4, Trop2, and many from the TGFß and p53 pathways have been identified as genes upregulated in response to COX-2 overexpression or PGs in colon carcinoma lines and overexpressed in colon tumor tissue. Here, we review the available evidence of the potential roles of those molecules in colon cancer in the context of PG/COX signaling pathways that could be critical mediators of some of the tumor growth and metastasis advantage induced by COX-2. At the end, this may allow defining new therapeutic targets/drugs against CRC that could act specifically against tumor cells and would be effective in the prevention and treatment of CRC, lacking the unwanted side effects of COX-2 pharmacological inhibitors, providing alternative approaches in colon cancer.

2.
J Allergy Clin Immunol ; 126(5): 1032-40, 1040.e1-4, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20728205

RESUMO

BACKGROUND: Leukotrienes (LTs) are potent proinflammatory lipid mediators with key roles in the pathogenesis of asthma and inflammation. Recently, nanovesicles (exosomes), released from macrophages and dendritic cells (DCs), have become increasingly appreciated as messengers in immunity. OBJECTIVE: We investigated whether exosomes from human macrophages, DCs, and plasma contain enzymes for LT biosynthesis and studied potential roles for exosomes in transcellular LT metabolism and granulocyte chemotaxis. METHODS: The presence of LT pathway enzymes and LT biosynthesis in exosomes and cells was analyzed by Western blot, immunoelectron microscopy, and enzyme activity assays. Surface marker expression was evaluated by flow cytometry, and granulocyte migration was assessed in a multiwell chemotaxis system. RESULTS: Exosomes from macrophages and DCs contain functional enzymes for LT biosynthesis. After incubation of intact cells with the LT biosynthesis intermediate LTA(4), LTB(4) was the major product of macrophages, whereas DCs primarily formed LTC(4). However, in exosomes from both cell types, LTC(4) was the predominant LTA(4) metabolite. Exosomal LTC(4) formation (per milligram protein) exceeded that of cells. In macrophages and DCs, TGF-ß1 upregulated LTA(4) hydrolase along with increased LTB(4) formation also in the exosomes. Moreover, TGF-ß1 modified the expression of surface marker proteins on cells and exosomes and reduced the exosome yield from macrophages. On Ca(2+)-ionophore and arachidonic acid stimulation, exosomes produced chemotactic eicosanoids and induced granulocyte migration. Interestingly, active LTA(4) hydrolase and LTC(4) synthase were present also in exosomes from human plasma. CONCLUSION: Our findings indicate that exosomes can contribute to inflammation by participation in LT biosynthesis and granulocyte recruitment.


Assuntos
Quimiotaxia de Leucócito/imunologia , Células Dendríticas/enzimologia , Exossomos/enzimologia , Granulócitos/metabolismo , Leucotrienos/biossíntese , Macrófagos/enzimologia , Western Blotting , Separação Celular , Células Dendríticas/imunologia , Exossomos/imunologia , Citometria de Fluxo , Granulócitos/imunologia , Humanos , Leucotrienos/imunologia , Macrófagos/imunologia , Microscopia Imunoeletrônica
3.
Mol Immunol ; 46(1): 106-15, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18760839

RESUMO

We have investigated the role of intracellular HIV-1 Tat on CXCR4 expression on T cells. We found that stable or doxycycline-regulated expression of HIV-1 Tat on Jurkat T cells results in lower cell surface expression of CXCR4, but not of other chemokine receptors. This effect was not due to an alteration in CXCR4 transcription, and total CXCR4 levels remained unaltered. Rather, when cells were treated with CXCL12/Stromal Cell-Derived Factor 1, a faster downmodulation of CXCR4 was observed although resurfacing was unaffected. Similar effect was seen in peripheral human T cells transiently transfected with Tat. At the molecular level Tat did not alter cellular levels of G-coupled receptor kinases 2 and 6 and beta-arrestin, proteins involved in CXCR4 downregulation. Neither Tat significantly affected phosphatidylinositol 3-kinase activation in response to CXCL12. Interestingly, in Jurkat cell clones stably expressing both Protein kinase (PK)-Czeta and HIV-1 Tat, CXCL12 induced a faster CXCR4 internalization than in cells only expressing HIV-1 Tat. In contrast in Jurkat cell stably expressing a dominant negative PKCzeta, Tat enhancement of CXCR4 internalization was abrogated. Thus, our results show a new function of HIV-1 Tat, its ability to regulate CXCR4 expression via PKCzeta. The significance of those results is discussed.


Assuntos
Membrana Celular/metabolismo , Quimiocina CXCL12/farmacologia , Regulação para Baixo/efeitos dos fármacos , Proteína Quinase C/metabolismo , Receptores CXCR4/metabolismo , Linfócitos T/enzimologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Membrana Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Células Jurkat , Receptores CXCR4/genética , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Transcrição Gênica/efeitos dos fármacos
4.
J Gen Virol ; 87(Pt 6): 1603-1612, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16690925

RESUMO

Human immunodeficiency virus type 1 (HIV-1) Tat affects cellular gene expression through modulation of the activity of different transcription factors. Here, the role of Tat in the cooperation between nuclear factor of activated T cells (NFAT) and activator protein 1 (AP-1) transcription factors was investigated. Constitutive or transient Tat expression in Jurkat T cells enhanced cooperative NFAT/AP-1- but not AP-1-dependent transcription independent of its ability to transactivate the HIV-1 LTR. The enhancing effect of Tat took place after nuclear translocation of NFAT. Furthermore, transactivation of an NFAT/AP-1 reporter by transfection of NFAT and c-Jun was strongly enhanced by simultaneous Tat transfection. Moreover, intracellular Tat expression increased the binding of NFAT/AP-1 complexes to the interleukin 2 promoter without significantly altering NFAT- and AP-1-independent binding. HIV-1 Tat interacted with NFAT but not c-Jun. These results indicate that Tat interacts with NFAT, affecting its cooperation with AP-1, without altering independent binding of these transcription factors to DNA.


Assuntos
Produtos do Gene tat/metabolismo , Fatores de Transcrição NFATC/metabolismo , Fator de Transcrição AP-1/metabolismo , Ativação Transcricional , Produtos do Gene tat/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Células Jurkat , Ativação Linfocitária , Fatores de Transcrição NFATC/genética , Linfócitos T , Fator de Transcrição AP-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...