Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1133404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089788

RESUMO

Barley is an important crop worldwide known for its adaptation to harsh environments and used in multiple forms as feed, food and beverages. Its productivity is affected by major abiotic and biotic stresses. Scald caused by hemibiotrophic fungus Rhynchosporium commune is a major foliar disease in many parts of the world. Host plant resistance is targeted by breeders to efficiently control this disease. An association mapping panel of 316 spring barley genotypes (AM2017) was screened for seedling resistance in greenhouse against three R. commune isolates and for adult plant resistance in three field locations in Morocco. The phenotyping results showed different numbers of entries with resistant and moderately resistant reactions at both seedling and adult plant stages. The reactions differed between the isolates with the highest percentage of resistant genotypes observed for isolate SC-S611 (49.4%) and highest percentage of susceptible genotypes (73.8%) for isolate SC-1122. At adult plant stage, the highest percentage of scald resistant genotypes (64.5%) was observed at Rommani site compared to 56% at Guich site and only 28.8% at Marchouch site. Seven genotypes were resistant at the seedling and adult plant stages. Genome wide association study (GWAS) revealed 102 MTA (15 QTL) at the seedling stage, and 25 MTA (12 QTL) associated with scald resistance at the adult plant stage. In addition, the sequences of 92 out of 102 at SRT, and 24 out of 25 significant SNP markers at APR were located in genomic regions enriched with functional proteins involved in diverse cellular processes including disease resistance. These markers span over all chromosomes with the majority of SNPs located on 3H and 7H. This study has verified 18 QTL reported in previous studies. In addition, it was successful in identifying new sources of resistance and novel genomic regions which could help in enhancing scald resistance in barley breeding programs.

2.
Sci Rep ; 11(1): 15967, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354105

RESUMO

Barley production worldwide is limited by several abiotic and biotic stresses and breeding of highly productive and adapted varieties is key to overcome these challenges. Leaf scald, caused by Rhynchosporium commune is a major disease of barley that requires the identification of novel sources of resistance. In this study two subsets of genebank accessions were used: one extracted from the Reference set developed within the Generation Challenge Program (GCP) with 191 accessions, and the other with 101 accessions selected using the filtering approach of the Focused Identification of Germplasm Strategy (FIGS). These subsets were evaluated for resistance to scald at the seedling stage under controlled conditions using two Moroccan isolates, and at the adult plant stage in Ethiopia and Morocco. The results showed that both GCP and FIGS subsets were able to identify sources of resistance to leaf scald at both plant growth stages. In addition, the test of independence and goodness of fit showed that FIGS filtering approach was able to capture higher percentages of resistant accessions compared to GCP subset at the seedling stage against two Moroccan scald isolates, and at the adult plant stage against four field populations of Morocco and Ethiopia, with the exception of Holetta nursery 2017. Furthermore, four machine learning models were tuned on training sets to predict scald reactions on the test sets based on diverse metrics (accuracy, specificity, and Kappa). All models efficiently identified resistant accessions with specificities higher than 0.88 but showed different performances between isolates at the seedling and to field populations at the adult plant stage. The findings of our study will help in fine-tuning FIGS approach using machine learning for the selection of best-bet subsets for resistance to scald disease from the large number of genebank accessions.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Hordeum/genética , Algoritmos , Ascomicetos/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Bases de Dados Genéticas , Genes de Plantas/genética , Genótipo , Aprendizado de Máquina , Modelos Teóricos , Marrocos , Fenótipo , Melhoramento Vegetal/métodos , Doenças das Plantas , Folhas de Planta/genética , Locos de Características Quantitativas/genética , Plântula/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA