Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(61): 9408-9411, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37436128

RESUMO

The reaction of reducing end groups in cellulose nanocrystals with dodecylamine was examined. Using a direct-dissolution solution-state NMR protocol, the regioselective formation of glucosylamines was shown. This provides an elegant approach to sustainably functionalize these bio-based nanomaterials, that may not require further reduction to more stable secondary amines.

2.
Biomater Sci ; 11(14): 4972-4984, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37334482

RESUMO

Microfluidic on-chip production of polymeric hydrogel microspheres (MPs) can be designed for the loading of different biologically active cargos and living cells. Among different gelation strategies, ionically crosslinked microspheres generally show limited mechanical properties, meanwhile covalently crosslinked microspheres often require the use of crosslinking agents or initiators with limited biocompatibility. Inverse electron demand Diels Alder (iEDDA) click chemistry is a promising covalent crosslinking method with fast kinetics, high chemoselectivity, high efficiency and no cross-reactivity. Herein, in situ gellable iEDDA-crosslinked polymeric hydrogel microspheres are developed via water-in-oil emulsification (W/O) glass microfluidics. The microspheres are composed of two polyethylene glycol precursors modified with either tetrazine or norbornene as functional moieties. Using a single co-flow glass microfluidic platform, homogenous MPs of sizes 200-600 µm are developed and crosslinked within 2 minutes. The rheological properties of iEDDA crosslinked bulk hydrogels are maintained with a low swelling degree and a slow degradation behaviour under physiological conditions. Moreover, a high-protein loading capacity can be achieved, and the encapsulation of mammalian cells is possible. Overall, this work provides the possibility of developing microfluidics-produced iEDDA-crosslinked MPs as a potential drug vehicle and cell encapsulation system in the biomedical field.


Assuntos
Compostos Heterocíclicos , Hidrogéis , Animais , Hidrogéis/química , Microfluídica , Encapsulamento de Células , Química Click , Elétrons , Microesferas , Norbornanos/química , Mamíferos
3.
Nat Protoc ; 18(7): 2084-2123, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37237027

RESUMO

Owing to its high sustainable production capacity, cellulose represents a valuable feedstock for the development of more sustainable alternatives to currently used fossil fuel-based materials. Chemical analysis of cellulose remains challenging, and analytical techniques have not advanced as fast as the development of the proposed materials science applications. Crystalline cellulosic materials are insoluble in most solvents, which restricts direct analytical techniques to lower-resolution solid-state spectroscopy, destructive indirect procedures or to 'old-school' derivatization protocols. While investigating their use for biomass valorization, tetralkylphosphonium ionic liquids (ILs) exhibited advantageous properties for direct solution-state nuclear magnetic resonance (NMR) analysis of crystalline cellulose. After screening and optimization, the IL tetra-n-butylphosphonium acetate [P4444][OAc], diluted with dimethyl sulfoxide-d6, was found to be the most promising partly deuterated solvent system for high-resolution solution-state NMR. The solvent system has been used for the measurement of both 1D and 2D experiments for a wide substrate scope, with excellent spectral quality and signal-to-noise, all with modest collection times. The procedure initially describes the scalable syntheses of an IL, in 24-72 h, of sufficient purity, yielding a stock electrolyte solution. The dissolution of cellulosic materials and preparation of NMR samples is presented, with pretreatment, concentration and dissolution time recommendations for different sample types. Also included is a set of recommended 1D and 2D NMR experiments with parameters optimized for an in-depth structural characterization of cellulosic materials. The time required for full characterization varies between a few hours and several days.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Solubilidade , Celulose/química , Solventes/química , Espectroscopia de Ressonância Magnética , Eletrólitos/química
4.
Biomacromolecules ; 24(3): 1318-1328, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36749901

RESUMO

Phosphorylation of cellulose nanocrystals (CNCs) has remained a marginal activity despite the undisputed application potential in flame-retardant materials, sustainable high-capacity ion-exchange materials, or substrates for biomineralization among others. This is largely due to strenuous extraction methods prone to a combination of poor reproducibility, low degrees of substitution, disappointing yields, and impractical reaction sequences. Here, we demonstrate an improved methodology relying on the modification routines for phosphorylated cellulose nanofibers and hydrolysis by gaseous HCl to isolate CNCs. This allows us to overcome the aforementioned shortcomings and to reliably and reproducibly extract phosphorylated CNCs with exceptionally high surface charge (∼2000 mmol/kg) in a straightforward routine that minimizes water consumption and maximizes yields. The CNCs were characterized by NMR, ζpotential, conductometric titration, thermogravimetry, elemental analysis, wide-angle X-ray scattering, transmission electron microscopy, and atomic force microscopy.


Assuntos
Nanofibras , Nanopartículas , Celulose/química , Reprodutibilidade dos Testes , Nanopartículas/química , Nanofibras/química , Microscopia Eletrônica de Transmissão
5.
Ultrason Sonochem ; 85: 105970, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35367736

RESUMO

Lipid-based materials, such as substitutes for saturated fats (oleogels) structurally modified with ultrasonic standing waves (USW), have been developed by our group. To enable their potential application in food products, pharmaceuticals, and cosmetics, practical and economical production methods are needed. Here, we report scale-up of our procedure of structurally modifying oleogels via the use of USW by a factor of 200 compared to our previous microfluidic chamber. To this end, we compared three different USW chamber prototypes through finite element simulations (FEM) and experimental work. Imaging of the internal structure of USW-treated oleogels was used as feedback for successful development of chambers, i.e., the formation of band-like structures was the guiding factor in chamber development. We then studied the bulk mechanical properties by a uniaxial compression test of the sonicated oleogels obtained with the most promising USW chamber, and sampled local mechanical properties using scanning acoustic microscopy. The results were interpreted using a hyperelastic foam model. The stability of the sonicated oleogels was compared to control samples using automated image analysis oil-release tests. This work enabled the effective mechanical-structural manipulation of oleogels in volumes of 10-100 mL, thus paving the way for USW treatments of large-scale lipid-based materials.


Assuntos
Compostos Orgânicos , Ultrassom , Ácidos Graxos/análise , Compostos Orgânicos/química , Ondas Ultrassônicas
6.
Chemphyschem ; 23(7): e202100635, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35130371

RESUMO

We have identified cellulose solvents, comprised of binary mixtures of molecular solvents and ionic liquids that rapidly dissolve cellulose to high concentration and show upper-critical solution temperature (UCST)-like thermodynamic behaviour - upon cooling and micro phase-separation to roughly spherical microparticle particle-gel mixtures. This is a result of an entropy-dominant process, controllable by changing temperature, with an overall exothermic regeneration step. However, the initial dissolution of cellulose in this system, from the majority cellulose I allomorph upon increasing temperature, is also exothermic. The mixtures essentially act as 'thermo-switchable' gels. Upon initial dissolution and cooling, micro-scaled spherical particles are formed, the formation onset and size of which are dependent on the presence of traces of water. Wide-angle X-ray scattering (WAXS) and 13 C cross-polarisation magic-angle spinning (CP-MAS) NMR spectroscopy have identified that the cellulose micro phase-separates with no remaining cellulose I allomorph and eventually forms a proportion of the cellulose II allomorph after water washing and drying. The rheological properties of these solutions demonstrate the possibility of a new type of cellulose processing, whereby morphology can be influenced by changing temperature.


Assuntos
Celulose , Líquidos Iônicos , Acetatos , Celulose/química , Dimetil Sulfóxido/química , Imidazóis/química , Líquidos Iônicos/química , Lactonas
7.
Langmuir ; 38(17): 5197-5208, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34879650

RESUMO

Poly(aminoethyl methacrylate) (PAEMA), poly(ethylene oxide)-block-(aminoethyl methacrylate) (PEO-PAEMA), and their guanidinylated derivates, poly(guanidine ethyl methacrylate) (PGEMA) and poly(ethylene oxide)-block-(guanidine ethyl methacrylate) (PEO-PGEMA), were prepared to study their capabilities for CO2 adsorption and release. The polymers of different forms or degree of guanidinylation were thoroughly characterized, and their interaction with CO2 was studied by NMR and calorimetry. The extent and kinetics of adsorption and desorption of N2 and CO2 were investigated by thermogravimetry under controlled gas atmospheres. The materials did not adsorb N2, whereas CO2 could be reversibly adsorbed at room temperature and released by an elevated temperature. The most promising polymer was PGEMA with a guanidinylation degree of 7% showing a CO2 adsorption capacity of 2.4 mmol/g at room temperature and a desorption temperature of 72 °C. The study also revealed relations between the polymer chemical composition and CO2 adsorption and release characteristics that are useful in future formulations for CO2 adsorbent polymer materials.

8.
Polymers (Basel) ; 13(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34685360

RESUMO

A prospective technology for reversible enzyme complexation accompanied with its inactivation and protection followed by reactivation after a fast thermocontrolled release has been demonstrated. A thermoresponsive polymer with upper critical solution temperature, poly(N-acryloyl glycinamide) (PNAGA), which is soluble in water at elevated temperatures but phase separates at low temperatures, has been shown to bind lysozyme, chosen as a model enzyme, at a low temperature (10 °C and lower) but not at room temperature (around 25 °C). The cooling of the mixture of PNAGA and lysozyme solutions from room temperature resulted in the capturing of the protein and the formation of stable complexes; heating it back up was accompanied by dissolving the complexes and the release of the bound lysozyme. Captured by the polymer, lysozyme was inactive, but a temperature-mediated release from the complexes was accompanied by its reactivation. Complexation also partially protected lysozyme from proteolytic degradation by proteinase K, which is useful for biotechnological applications. The obtained results are relevant for important medicinal tasks associated with drug delivery such as the delivery and controlled release of enzyme-based drugs.

9.
Adv Mater ; 33(40): e2007761, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34382257

RESUMO

Polyoxometalates are an emerging class of molecular clusters, with well-defined structures and chemical compositions that are produced through simple, low-cost, and highly reproducible methods. In particular, the wheel-shaped cluster {Mo154 } is a promising photothermal agent due to its intervalence charge transfer transitions. However, its toxicity hinders its systemic administration, being the development of a localized delivery system still incipient. Herein, an injectable and self-healing hydrogel of easy preparation and administration is developed, incorporating both {Mo154 } and doxorubicin for synergistic photothermal and chemotherapy applications. The hydrogel is composed of benzylaldehyde functionalized polyethylene glycol, poly(N-isopropylacrylamide) functionalized chitosan and {Mo154 }. The gelation occurs within 60 s at room temperature, and the dual crosslinking by Schiff base and electrostatic interactions generates a dynamic network, which enables self-healing after injection. Moreover, the hydrogel delivers chemotherapeutic drugs, with a release triggered by dual near infra-red (NIR) radiation and pH changes. This stimuli-responsive release system along with the photothermal conversion ability of the hydrogel allows the simultaneous combination of photothermal and chemotherapy. This synergic system efficiently ablates the cancer tumor in vivo with no systemic toxicity. Overall, this work paves the way for the development of novel {Mo154 }-based systems, incorporated in self-healing and injectable hydrogels for dual chemo-photothermal therapy.


Assuntos
Portadores de Fármacos/química , Hidrogéis/química , Raios Infravermelhos , Terapia Fototérmica/métodos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Humanos , Hidrogéis/farmacologia , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Polietilenoglicóis/química , Transplante Heterólogo
10.
Langmuir ; 37(8): 2639-2648, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33594889

RESUMO

Poly(N-acryloyl glycinamide) is a well-known thermoresponsive polymer possessing an upper critical solution temperature (UCST) in water. By copolymerizing N-acryloyl glycinamide (NAGA) with methacrylic acid (MAA) in the presence of a crosslinker, poly(N-acryloyl glycinamide-co-methacrylic acid) [P(NAGA-MAA)] copolymer microgels with an MAA molar fraction of 10-70 mol % were obtained. The polymerization kinetics suggests that the copolymer microgels have a random structure. The size of the microgels was between 60 and 120 nm in the non-aggregated swollen state in aqueous medium and depending on the solvent conditions, they show reversible swelling and shrinking upon temperature change. Their phase transition behavior was studied by a combination of methods to understand the process of the UCST-type behavior and interactions between NAGA and MAA. P(NAGA-MAA) microgels were loaded with silver nanoparticles (AgNPs) by the reduction of AgNO3 under UV light. Compared with the chemical reduction of AgNO3, the photoreduction results in smaller AgNPs and the amount and size of the AgNPs are dependent on the comonomer ratio. The catalytic activity of the AgNP-loaded microgels in 4-nitrophenol reduction was tested.

11.
Small ; 17(27): e2005205, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33491913

RESUMO

Because of their lightweight structure, flexibility, and immunity to electromagnetic interference, polymer optical fibers (POFs) are used in numerous short-distance applications. Notably, the incorporation of luminescent nanomaterials in POFs offers optical amplification and sensing for advanced nanophotonics. However, conventional POFs suffer from nonsustainable components and processes. Furthermore, the traditionally used luminescent nanomaterials undergo photobleaching, oxidation, and they can be cytotoxic. Therefore, biopolymer-based optical fibers containing nontoxic luminescent nanomaterials are needed, with efficient and environmentally acceptable extrusion methods. Here, such an approach for fibers wet-spun from aqueous methylcellulose (MC) dispersions under ambient conditions is demonstrated. Further, the addition of either luminescent gold nanoclusters, rod-like cellulose nanocrystals or gold nanocluster-cellulose nanocrystal hybrids into the MC matrix furnishes strong and ductile composite fibers. Using cutback attenuation measurement, it is shown that the resulting fibers can act as short-distance optical fibers with a propagation loss as low as 1.47 dB cm-1 . The optical performance is on par with or even better than some of the previously reported biopolymeric optical fibers. The combination of excellent mechanical properties (Young's modulus and maximum strain values up to 8.4 GPa and 52%, respectively), low attenuation coefficient, and high photostability makes the MC-based composite fibers excellent candidates for multifunctional optical fibers and sensors.


Assuntos
Ouro , Metilcelulose , Celulose , Módulo de Elasticidade , Fibras Ópticas
12.
Macromolecules ; 53(19): 8267-8275, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33122865

RESUMO

Manipulation of self-assembly behavior of copolymers via environmental change is attractive in the fabrication of smart polymeric materials. We present tunable self-assembly behavior of graft copolymers, poly(sulfobetaine methacrylate)-graft-poly[oligo(ethylene glycol) methyl ether methacrylate)-co-di(ethylene glycol) methyl ether methacrylate] (PSBM-g-P(OEGMA-co-DEGMA)). Upon heating the aqueous solutions, the graft copolymers undergo a transition from micelles with PSBM cores to unimers (i.e., individual macromolecules) and then to reversed micelles with P(OEGMA-co-DEGMA) cores, thus demonstrating the tunability of the self-assembling through temperature change. In the presence of salt the temperature response of PSBM is eliminated, and the structure of the micelles with the P(OEGMA-co-DEGMA) core changes. Moreover, for the graft copolymer with long side chains, micelles with aggregation number ∼ 2 were formed with a PSBM core at low temperature, which is ascribed to the steric effect of the P(OEGMA-co-DEGMA) shell.

13.
J Agric Food Chem ; 68(26): 7051-7061, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32511911

RESUMO

Low-molecular-weight compounds containing alkylurea fragments attached to the amino end of different miminalistic pseudopeptidic structures have been shown to be excellent organogelators in a variety of organic solvents and liquid organic compounds of different nature. The formation of gels in this work is defined through rheological measurements for those cases where G' > G''. Both the topology and the symmetry of the corresponding urea compounds play a role in defining their organogelator behavior. This can also be tuned by the presence of additional supramolecular guests, as is the case for suberic acid. These compounds also achieve the gelation of relevant active substances such as terpene natural oils and complex mixtures of flavors and fragrances. This provides a simple and mass-efficient supramolecular system for the quantitative encapsulation of active substances, without the need for any additional solvent or complex processes, and their consequent controlled release.


Assuntos
Preparações de Ação Retardada/química , Limoneno/química , Peptídeos/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Géis/química , Peso Molecular , Reologia , Terpenos/química
14.
Polymers (Basel) ; 12(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110929

RESUMO

Nanodiamonds (NDs) can considerably improve the mechanical and thermal properties of polymeric composites. However, the tendency of NDs to aggregate limits the potential of these non-toxic, mechanically- and chemically-robust nanofillers. In this work, tough, flexible, and stimuli-responsive polyelectrolyte films composed of cross-linked poly(butyl acrylate-co-dimethylaminoethyl methacrylate) (P(BA-co-DMAEMA)) were prepared by photopolymerization. The effects of the added carboxylate-functionalized NDs on their mechanical and stimuli-responsive properties were studied. When the negatively charged NDs were added to the polymerization media directly, the mechanical properties of the films changed only slightly, because of the uneven distribution of the aggregated NDs in the films. In order to disperse and distribute the NDs more evenly, a prepolymerized polycation block copolymer complexing agent was used during the photopolymerization process. This approach improved the mechanical properties of the films and enhanced their thermally-induced, reversible phase-transition behavior.

15.
Biomacromolecules ; 21(2): 830-838, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31940433

RESUMO

We show ionically cross-linked, temperature-responsive reversible or irreversible hydrogels of anionic cellulose nanocrystals (CNCs) and methacrylate terpolymers by mixing them homogeneously in the initially charge-neutral state of the polymer, which was subsequently switched to be cationic by cleaving side groups by UV irradiation. The polymer is a random terpolymer poly(di(ethylene glycol) methyl ether methacrylate)-rnd-poly(oligo(ethylene glycol) methyl ether methacrylate)-rnd-poly(2-((2-nitrobenzyl)oxycarbonyl)aminoethyl methacrylate), that is, PDEGMA-rnd-POEGMA-rnd-PNBOCAEMA. The PDEGMA and POEGMA repeating units lead to a lower critical solution temperature (LCST) behavior. Initially, homogeneous aqueous mixtures are obtained with CNCs, and no gelation is observed even upon heating to 60 °C. However, upon UV irradiation, the NBOCAEMAs are transformed to cationic 2-aminoethyl methacrylate (AEMA) groups, as 2-nitrobenzaldehyde moieties are cleaved. The resulting mixtures of anionic CNC and cationic PDEGMA-rnd-POEGMA-rnd-PAEMA show gelation for sufficiently high polymer fractions upon heating to 60 °C due to the interplay of ionic interactions and LCST. For short heating times, the gelation is thermoreversible, whereas for long enough heating times, irreversible gels can be obtained, indicating importance of kinetic aspects. The ionic nature of the cross-linking is directly shown by adding NaCl, which leads to gel melting. In conclusion, the optical triggering of the polymer ionic interactions in combination with its LCST phase behavior allows a new way for ionic nanocellulose hydrogel assemblies.


Assuntos
Celulose/efeitos da radiação , Hidrogéis/efeitos da radiação , Nanopartículas/efeitos da radiação , Raios Ultravioleta , Celulose/química , Cromatografia em Gel/métodos , Difusão Dinâmica da Luz/métodos , Hidrogéis/química , Nanopartículas/química , Temperatura
16.
Biomacromolecules ; 21(2): 955-965, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31917581

RESUMO

Soft nanoparticles are interesting materials due to their size, deformability, and ability to host guest molecules. Surface properties play an essential role in determining the fate of the particles in biological medium, and coating of the nanoparticles (and polymers) with carbohydrates has been found to be an efficient strategy for increasing their biocompatibility and fine-tuning other important properties such as aqueous solubility. In this work, soft nanogels of poly(N-vinylcaprolactam), PNVCL, were surface-functionalized with different glucose and maltose ligands, and the colloidal properties of the gels were analyzed. The PNVCL nanogels were first prepared via semibatch precipitation polymerization, where a comonomer, propargyl acrylate (PA), was added after preparticle formation. The aim was to synthesize "clickable" nanogels with alkyne groups on their surfaces. The nanogels were then functionalized with two separate azido-glucosides and azido-maltosides (containing different linkers) through a copper-catalyzed azide-alkyne cycloaddition (CuAAc) click reaction. The glucose and maltose bearing nanogels were thermoresponsive and shrank upon heating. Compared to the PNVCL-PA nanogel, the carbohydrate bearing ones were larger, more hydrophilic, had volume phase transitions at higher temperatures, and were more stable against salt-induced precipitation. In addition to investigating the colloidal properties of the nanogels, the carbohydrate recognition was addressed by studying the interactions with a model lectin, concanavalin A (Con A). The binding efficiency was not affected by the temperature, which indicates that the carbohydrate moieties are located on the gel surfaces, and are capable of interacting with other biomolecules independent of temperature. Thus, the synthesis produces nanogels, which have surface functions capable of biorelevant interactions and a thermoresponsive structure. These types of particles can be used for drug delivery.


Assuntos
Caprolactama/análogos & derivados , Glucose/química , Maltose/química , Nanogéis/química , Polímeros/química , Caprolactama/química , Caprolactama/metabolismo , Coloides/química , Coloides/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Glucose/metabolismo , Maltose/metabolismo , Polímeros/metabolismo , Propriedades de Superfície , Temperatura
17.
Macromolecules ; 52(17): 6514-6522, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31543553

RESUMO

Mechanisms of the phase separation and remixing of cationic PEG-containing block copolymers have been investigated in aqueous lithium triflate solutions. The polycation was poly(vinylbenzyl trimethylammonium triflate). We have previously reported on one such block copolymer, which upon cooling of a hot clear solution first underwent phase separation into a turbid colloid and, later, partially cleared again with further cooling. To better understand the balance of various interactions in the solutions/dispersions, a series of polymers with varying DP of the cationic block was synthesized. From one of the polymers, the alkyl end group (a fragment of the chain transfer agent) was removed. The length of the cationic block affected critically the behavior, but the hydrophobic end group had a minimal effect. Polymers with a short cationic block turn cloudy and partially clear again during a temperature decrease, whereas those with a long cationic block phase separate and slowly precipitate and remix only when heated. Phase separation takes place via particle formation, and we suggest different mechanisms for colloidal stabilization of particles composed of short or long chains.

18.
Biomacromolecules ; 20(5): 2105-2114, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30983326

RESUMO

Alternatives to petroleum-based plastics are of great significance not only from the point of view of their scientific and practical impact but to reduce the environmental footprint. Inspired by the composition and structure of wood's cell walls, we used phenolic acids to endow cellulosic fibers with new properties. The fiber dissolution and homogeneous modification were performed with a recyclable ionic liquid (IL) (tetrabutylammonium acetate ([N4444][OAc]):dimethyl sulfoxide) to attain different levels of reaction activity for three phenolic acids ( p-hydroxybenzoic acid, vanillic acid, and syringic acid). The successful autocatalytic Fischer esterification reaction was thoroughly investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, elemental analysis, and nuclear magnetic resonance spectroscopy (13C CP-MAS, diffusion-edited 1H NMR and multiplicity-edited heteronuclear single quantum coherence). Control of the properties of cellulose in the dispersed state, welding, and IL plasticization were achieved during casting and recrystallization to the cellulose II crystalline allomorph. Films of cellulose carrying grafted acids were characterized with respect to properties relevant to packaging materials. Most notably, despite the low degree of esterification (DS < 0.25), the films displayed a remarkable strength (3.5 GPa), flexibility (strains up to 35%), optical transparency (>90%), and water resistance (WCA ∼ 90°). Moreover, the measured water vapor barrier was found to be similar to that of poly(lactic acid) composite films. Overall, the results contribute to the development of the next-generation green, renewable, and biodegradable films for packaging applications.


Assuntos
Plásticos Biodegradáveis/síntese química , Celulose/análogos & derivados , Líquidos Iônicos/química , Esterificação , Fenóis/química , Embalagem de Produtos/métodos , Resistência à Tração
19.
Carbohydr Polym ; 207: 11-16, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30599991

RESUMO

The valorization of cellulose rich textile waste is promoted by the development of a novel solid-state NMR method for the quantification of cellulose and polyester in textile blends. We applied 13C CP-MAS NMR as a tool for the quantification and structural characterization of cellulose in cotton polyester blends. Gaussian functions were used to integrate the spectra obtained from a set of calibration standards in order to calculate a sigmoidal calibration curve. Acid hydrolysis was chosen as a reference method. The results demonstrated that solid-state NMR enables a reliable determination of cellulose and polyester in both preconsumer and postconsumer waste textiles and suggests a possible extension of the concept to blends of man-made cellulose fibers (MMCFs) and polyester.


Assuntos
Celulose/análise , Resíduos Industriais/análise , Poliésteres/análise , Têxteis , Calibragem , Celulose/química , Fibra de Algodão/análise , Hidrólise , Espectroscopia de Ressonância Magnética/métodos
20.
Int J Biol Macromol ; 121: 536-545, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30312700

RESUMO

Stabilization of the enzymes under stress conditions is of special interest for modern biochemistry, bioengineering, as well as for formulation and target delivery of protein-based drugs. Aiming to achieve an efficient stabilization at elevated temperature with no influence on the enzyme under normal conditions, we studied chaperone-like activity of thermoresponsive polymers based on poly(dimethylaminoethyl methacrylate) (PDMAEMA) toward two different proteins, glyceraldehyde-3-phosphate dehydrogenase and chicken egg lysozyme. The polymers has been shown to do not interact with the folded protein at room temperature but form a complex upon heating to either protein unfolding or polymer phase transition temperature. A PDMAEMA-PEO block copolymer with a dodecyl end-group (d-PDMAEMA-PEO) as well as PDMAEMA-PEO without the dodecyl groups protected the denatured protein against aggregation in contrast to PDMAEMA homopolymer. No effect of the polymers on the enzymatic activity of the client protein was observed at room temperature. The polymers also partially protected the enzyme against inactivation at high temperature. The results provide a platform for creation of artificial chaperones with unfolded protein recognition which is a major feature of natural chaperones.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/química , Metacrilatos/farmacologia , Muramidase/química , Nylons/farmacologia , Desdobramento de Proteína , Temperatura , Animais , Estabilidade Enzimática/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...